REAL-FAKE: EFFECTIVE TRAINING DATA SYNTHESISTHROUGH DISTRIBUTION MATCHING 论文学习

这篇文章主要讲的是生成数据在模型训练中的作用,对于接下来要研究的生成多模态数据具有重要的作用。

文章摘要首先讲生成数据很重要,但在训练高级的模型的时候效果不好。论文主要研究的是这背后的原理并且证明了生成数据的作用。

介绍部分,文章提到现在有很多工作都是用生成的文本,图像来训练,但使用假数据来训练的模型性能貌似和真数据来的有很大差距。文章认为这种差距是由生成图像与真实数据分布不一样导致的。文章还搞了个图表示这种分布:

但这个分布的衡量标准是什么?没太看懂。

网上的定义:数据分布是统计学中的重要概念,用于描述数据点在不同取值下的分布情况

但放在这里......不太懂

先前的工作大多是启发式的,本文要从理论框架的角度分析这个问题。总共就做两件事:1)目标数据和合成数据之间的分布差异,以及(2)训练集的基数

我对论文的理解遇到困难了......我应该先学习diffusion

相关推荐
fen_fen2 分钟前
学习笔记(32):matplotlib绘制简单图表-数据分布图
笔记·学习·matplotlib
说私域12 分钟前
基于开源AI大模型AI智能名片S2B2C商城小程序源码的私域流量新生态构建
人工智能·开源
HollowKnightZ18 分钟前
目标姿态估计综述:Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
人工智能·深度学习
算家计算1 小时前
“28项评测23项SOTA——GLM-4.1V-9B-Thinking本地部署教程:10B级视觉语言模型的性能天花板!
人工智能·开源
Codebee1 小时前
OneCode注解驱动:智能送货单系统的AI原生实现
人工智能·低代码
2401_878624792 小时前
pytorch 自动微分
人工智能·pytorch·python·机器学习
胖达不服输2 小时前
「日拱一码」021 机器学习——特征工程
人工智能·python·机器学习·特征工程
Rvelamen2 小时前
大模型安全风险与防护产品综述 —— 以 Otter LLM Guard 为例
人工智能
MARS_AI_2 小时前
大语言模型驱动智能语音应答:技术演进与架构革新
人工智能·语言模型·自然语言处理·架构·信息与通信