REAL-FAKE: EFFECTIVE TRAINING DATA SYNTHESISTHROUGH DISTRIBUTION MATCHING 论文学习

这篇文章主要讲的是生成数据在模型训练中的作用,对于接下来要研究的生成多模态数据具有重要的作用。

文章摘要首先讲生成数据很重要,但在训练高级的模型的时候效果不好。论文主要研究的是这背后的原理并且证明了生成数据的作用。

介绍部分,文章提到现在有很多工作都是用生成的文本,图像来训练,但使用假数据来训练的模型性能貌似和真数据来的有很大差距。文章认为这种差距是由生成图像与真实数据分布不一样导致的。文章还搞了个图表示这种分布:

但这个分布的衡量标准是什么?没太看懂。

网上的定义:数据分布是统计学中的重要概念,用于描述数据点在不同取值下的分布情况

但放在这里......不太懂

先前的工作大多是启发式的,本文要从理论框架的角度分析这个问题。总共就做两件事:1)目标数据和合成数据之间的分布差异,以及(2)训练集的基数

我对论文的理解遇到困难了......我应该先学习diffusion

相关推荐
云卓SKYDROID7 分钟前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首202044 分钟前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie1 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里1 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉
春日见2 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术2 小时前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
云边散步2 小时前
godot2D游戏教程系列二(4)
笔记·学习·游戏开发
hjs_deeplearning2 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy2 小时前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差