sicp每日一题[1.45]

Exercise 1.45

We saw in Section 1.3.3 that attempting to compute square roots by naively finding a fixed point of y->x/y does not converge, and that this can be fixed by average damping. The same method works for finding cube roots as fixed points of the average-dampedy x/y^2. Unfortunately, the process does not work for fourth roots---a single average damp is not enough to make a fixed-point search for y->x/y3 converge. On the other hand, if we average damp twice (i.e., use the average damp of the average damp of y->x/y3) the fixed-point search does converge. Do some experiments to determine how many average damps are required to compute nth roots as a fixed point search based upon repeated average damping of y->x/y^(n-1). Use this to implement a simple procedure for computing nth roots using fixed-point, average-damp,and the repeated procedure of Exercise1.43. Assume that any arithmetic operations you need are available as primitives.


这道题难度太难了,我最后也没能靠自己做出来。一个是怎么找到要执行几次average-damp,我一开始以为是 n-2,试了几个发现明显不是,又猜测是不是 n/2,结果还是不对,最后上网搜了一下才知道是 log 2(n),感兴趣的可以参考知乎的这个回答;知道了重复执行的次数,在编写代码的时候再次遇到了问题,我对于"把一个过程作为另一个过程的返回值"这个概念理解的还是不到位,没有理解(repeated average-damp n)之后还要给它传一个过程作为 average-damp 的参数,最后上网看了别人的答案才明白过来。下面是我的答案:

复制代码
; 求 x 和 f(x) 的平均值
(define (average-damp f)
  (lambda (x) (average x (f x))))

; 对于任意正整数 n,求使得 2^k < n 的最大 k 值
(define (max-expt n)
  (define (iter k pre)
    (if (< n pre)
        (- k 1)
        (iter (+ k 1) (* 2 pre))))
  (iter 1 2))

(define (nth-root x n)
  (fixed-point ((repeated average-damp (max-expt n))
                (lambda (y) (/ x (expt y (- n 1)))))
               1.0))


(display (nth-root 2 2))
(newline)
(display (nth-root 32 5))
(newline)

; 结果
1.4142135623746899
2.000001512995761
相关推荐
知识分享小能手11 小时前
uni-app 入门学习教程,从入门到精通,uni-app基础扩展 —— 详细知识点与案例(3)
vue.js·学习·ui·微信小程序·小程序·uni-app·编程
程序员鱼皮2 天前
为什么下载小电影时,进度总是卡在99%?
java·计算机·程序员·互联网·编程
程序员鱼皮4 天前
我造了个程序员练兵场,专治技术焦虑症!
java·计算机·程序员·编程·自学
程序员老舅5 天前
干货|腾讯 Linux C/C++ 后端开发岗面试
linux·c语言·c++·编程·大厂面试题
知识分享小能手6 天前
微信小程序入门学习教程,从入门到精通,自定义组件与第三方 UI 组件库(以 Vant Weapp 为例) (16)
前端·学习·ui·微信小程序·小程序·vue·编程
小牛马爱写博客8 天前
Shell 脚本编程全解析:从入门到企业级实战
编程·shell·脚本
bnsarocket8 天前
Verilog和FPGA的自学笔记4——多路选择器(always语句)
笔记·fpga开发·编程·verilog·自学·硬件编程
程序员鱼皮9 天前
让老弟做个数据同步,结果踩了 7 个大坑!
java·后端·计算机·程序员·编程·职场
C++chaofan20 天前
通过Selenium实现网页截图来生成应用封面
java·spring boot·后端·selenium·测试工具·编程·截图