使用bert_base_chinese实现文本语义相似度计算

本文选择将模型下载到本地,进行离线分析计算,也可以使用在线下载,但本文略过

1 下载bert_base_chinese

下载地址:https://huggingface.co/google-bert/bert-base-chinese/tree/main

下载图上红框内的四个文件,并按照下图的目录结构放置

bert-base-chinese文件夹里放

2 代码

python 复制代码
import torch
from transformers import BertTokenizer, BertModel
from torch.nn.functional import cosine_similarity

# 初始化分词器和模型
vocab_file = 'D:/code/python/rpa/vocab.txt'
tokenizer = BertTokenizer.from_pretrained(vocab_file)
model = BertModel.from_pretrained('D:/code/python/rpa/bert-base-chinese')

def get_bert_embeddings(text):
    # 对文本进行分词
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    # 获取BERT的输出
    with torch.no_grad():
        outputs = model(**inputs)
    # 获取最后一层的隐藏状态
    last_hidden_states = outputs.last_hidden_state
    # 取[CLS]标记的输出作为句子的表示
    sentence_embedding = last_hidden_states[:, 0, :]
    return sentence_embedding

# 计算两个文本的语义相似度
def calculate_similarity(text1, text2):
    emb1 = get_bert_embeddings(text1)
    emb2 = get_bert_embeddings(text2)
    
    # 计算余弦相似度
    # 将emb1和emb2调整为(batch_size, 1, embedding_dim),以便使用cosine_similarity
    similarity = cosine_similarity(emb1.unsqueeze(1), emb2.unsqueeze(1), dim=2)
    return similarity.item()

# 主函数
def main(text1, text2):
    similarity = calculate_similarity(text1, text2)
    print(f"The semantic similarity between the texts is: {similarity}")

text1 = '我的身体很健康'
text2 = '我没有生病'
main(text1, text2)
bash 复制代码
# result
The semantic similarity between the texts is: 0.8934338092803955
相关推荐
何双新2 分钟前
L2-1、打造稳定可控的 AI 输出 —— Prompt 模板与格式控制
人工智能·prompt
意.远3 分钟前
PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例
人工智能·pytorch·python·深度学习
移远通信1 小时前
2025上海车展 | 移远通信全栈车载智能解决方案重磅亮相,重构“全域智能”出行新范式
人工智能
蹦蹦跳跳真可爱5894 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
蚂蚁20145 小时前
卷积神经网络(二)
人工智能·计算机视觉
z_mazin7 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
lixy5798 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
youhebuke2258 小时前
利用deepseek快速生成甘特图
人工智能·甘特图·deepseek
訾博ZiBo8 小时前
AI日报 - 2025年04月26日
人工智能
郭不耐8 小时前
DeepSeek智能时空数据分析(三):专业级地理数据可视化赏析-《杭州市国土空间总体规划(2021-2035年)》
人工智能·信息可视化·数据分析·毕业设计·数据可视化·城市规划