How to apply streaming in azure openai dotnet web application?

题意:"如何在 Azure OpenAI 的 .NET Web 应用程序中应用流式处理?"

问题背景:

I want to create a web api backend that stream openai completion responses.

"我想创建一个 Web API 后端,用于流式传输 OpenAI 的完成响应。"

How can I apply the following solution to a web api action in controller?

"如何将以下解决方案应用到控制器中的 Web API 操作?"

cs 复制代码
var client = new OpenAIClient(nonAzureOpenAIApiKey, new OpenAIClientOptions());
var chatCompletionsOptions = new ChatCompletionsOptions()
{
    DeploymentName = "gpt-3.5-turbo", // Use DeploymentName for "model" with non-Azure clients
    Messages =
    {
        new ChatRequestSystemMessage("You are a helpful assistant. You will talk like a pirate."),
        new ChatRequestUserMessage("Can you help me?"),
        new ChatRequestAssistantMessage("Arrrr! Of course, me hearty! What can I do for ye?"),
        new ChatRequestUserMessage("What's the best way to train a parrot?"),
    }
};

await foreach (StreamingChatCompletionsUpdate chatUpdate in client.GetChatCompletionsStreaming(chatCompletionsOptions))
{
    if (chatUpdate.Role.HasValue)
    {
        Console.Write($"{chatUpdate.Role.Value.ToString().ToUpperInvariant()}: ");
    }
    if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
    {
        Console.Write(chatUpdate.ContentUpdate);
    }
}

问题解决:

You can simply wrap your code inside the controller

"您可以简单地将代码包裹在控制器内。"

cs 复制代码
using Microsoft.AspNetCore.Mvc;
using OpenAI;
using OpenAI.Chat;
using System.Collections.Generic;
using System.Threading.Tasks;

[ApiController]
[Route("[controller]")]
public class ChatController : ControllerBase
{
    [HttpGet]
    public async Task<ActionResult<List<string>>> GetChatCompletions()
    {
        var client = new OpenAIClient(nonAzureOpenAIApiKey, new OpenAIClientOptions());
        var chatCompletionsOptions = new ChatCompletionsOptions()
        {
            DeploymentName = "gpt-3.5-turbo",
            Messages =
            {
                new ChatRequestSystemMessage("You are a helpful assistant. You will talk like a pirate."),
                new ChatRequestUserMessage("Can you help me?"),
                new ChatRequestAssistantMessage("Arrrr! Of course, me hearty! What can I do for ye?"),
                new ChatRequestUserMessage("What's the best way to train a parrot?"),
            }
        };

        var responses = new List<string>();

        await foreach (StreamingChatCompletionsUpdate chatUpdate in client.GetChatCompletionsStreaming(chatCompletionsOptions))
        {
            if (chatUpdate.Role.HasValue)
            {
                responses.Add($"{chatUpdate.Role.Value.ToString().ToUpperInvariant()}: ");
            }
            if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
            {
                responses.Add(chatUpdate.ContentUpdate);
            }
        }

        return Ok(responses);
    }
}

If you don't want to hardcode the message and pass that as a body then you can do something like this

"如果您不想将消息硬编码并作为主体传递,那么您可以这样做"

cs 复制代码
using Microsoft.AspNetCore.Mvc;
using OpenAI;
using OpenAI.Chat;
using System.Collections.Generic;
using System.Threading.Tasks;

[ApiController]
[Route("[controller]")]
public class ChatController : ControllerBase
{
    public class ChatRequest
    {
        public List<string> Messages { get; set; }
    }

    [HttpPost]
    public async Task<ActionResult<List<string>>> PostChatCompletions([FromBody] ChatRequest request)
    {
        var client = new OpenAIClient(nonAzureOpenAIApiKey, new OpenAIClientOptions());
        var chatCompletionsOptions = new ChatCompletionsOptions()
        {
            DeploymentName = "gpt-3.5-turbo",
            Messages = new List<ChatRequestMessage>()
        };

        foreach (var message in request.Messages)
        {
            chatCompletionsOptions.Messages.Add(new ChatRequestUserMessage(message));
        }

        var responses = new List<string>();

        await foreach (StreamingChatCompletionsUpdate chatUpdate in client.GetChatCompletionsStreaming(chatCompletionsOptions))
        {
            if (chatUpdate.Role.HasValue)
            {
                responses.Add($"{chatUpdate.Role.Value.ToString().ToUpperInvariant()}: ");
            }
            if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
            {
                responses.Add(chatUpdate.ContentUpdate);
            }
        }

        return Ok(responses);
    }
}

Remember the above implementation of the API does not support streaming responses. It waits for all the chat completions to be received from the OpenAI API, then sends them all at once to the client.

"请记住,上述 API 实现不支持流式响应。它会等待从 OpenAI API 接收到所有聊天完成后,再将它们一次性发送给客户端。"

Streaming responses to the client as they are received from the OpenAI API would require a different approach. This could be achieved using Server-Sent Events (SSE) or a similar technology, but it's important to note that not all clients and network environments support these technologies.

"将从 OpenAI API 接收到的响应流式传输给客户端需要采用不同的方法。这可以通过使用服务器发送事件 (SSE) 或类似技术来实现,但需要注意的是,并非所有客户端和网络环境都支持这些技术。"

Here's a simplified example of how you could implement this using Server-Sent Events in ASP.NET Core:

"以下是一个使用服务器发送事件 (SSE) 在 ASP.NET Core 中实现此功能的简化示例:"

cs 复制代码
[HttpPost]
public async Task PostChatCompletions([FromBody] ChatRequest request)
{
    var client = new OpenAIClient(nonAzureOpenAIApiKey, new OpenAIClientOptions());
    var chatCompletionsOptions = new ChatCompletionsOptions()
    {
        DeploymentName = "gpt-3.5-turbo",
        Messages = new List<ChatRequestMessage>()
    };

    foreach (var message in request.Messages)
    {
        chatCompletionsOptions.Messages.Add(new ChatRequestUserMessage(message));
    }

    Response.Headers.Add("Content-Type", "text/event-stream");

    await foreach (StreamingChatCompletionsUpdate chatUpdate in client.GetChatCompletionsStreaming(chatCompletionsOptions))
    {
        if (chatUpdate.Role.HasValue)
        {
            await Response.WriteAsync($"data: {chatUpdate.Role.Value.ToString().ToUpperInvariant()}: \n\n");
        }
        if (!string.IsNullOrEmpty(chatUpdate.ContentUpdate))
        {
            await Response.WriteAsync($"data: {chatUpdate.ContentUpdate}\n\n");
        }
    }
}
相关推荐
oulaqiao3 小时前
语言集成查询LINQ
c#·linq
Damon小智3 小时前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow
健忘的派大星3 小时前
【AI大模型】根据官方案例使用milvus向量数据库打造问答RAG系统
人工智能·ai·语言模型·llm·milvus·agi·rag
xcLeigh3 小时前
WPF实战案例 | C# WPF实现大学选课系统
开发语言·c#·wpf
孤独且没人爱的纸鹤3 小时前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
one9963 小时前
.net 项目引用与 .NET Framework 项目引用之间的区别和相同
c#·.net·wpf
xcLeigh3 小时前
WPF基础 | WPF 布局系统深度剖析:从 Grid 到 StackPanel
c#·wpf
军训猫猫头14 小时前
52.this.DataContext = new UserViewModel(); C#例子 WPF例子
开发语言·c#·wpf
AI+程序员在路上17 小时前
C#调用c++dll的两种方法(静态方法和动态方法)
c++·microsoft·c#