TensorFlow-keras介绍(二)

目录

一.tf.keras相关操作

1.获取相关现有数据集

2.构建模型

3.训练与评估

二.案例:实现多层神经网络进行时装分类

1.读取数据

2.建立模型

3.设置模型参数,开始训练,评估模型

4.保存和加载模型

5.使用保存的模型进行预测

6.添加tensorboard

四.完整代码

都看到这里了,点个赞把!!!


一.tf.keras相关操作

1.获取相关现有数据集

保证在keras.datasets中,

.mnist:手写数字。

.fashion_mnist:服装分类,

.cifar10(100):10个类别分类

python 复制代码
from tensorflow import keras

fashion_mnist=keras.datasets.fashion_mnist

(train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()

print(train_images,train_labels)

2.构建模型

在keras中,可以通过组合层来构建模型。模型通常是以层构建成图,最常见模型是层的推叠,keras.layers中就又许多模型:

python 复制代码
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import Dot
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import ELU
from tensorflow.python.keras.layers import Embedding
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import GRU
from tensorflow.python.keras.layers import GRUCell
from tensorflow.python.keras.layers import LSTMCell
...
...
...

Flatten:将输入数据进行改变展开

Dense:添加一层神经元,Dense(units,activation=None,**kwargs)

units:神经元个数

activation:激活函数

**kwargs:输入上层输入的形状minput_shape=()

(其他方法看上一章)

python 复制代码
model=keras.Sequential([
    # 将输入的数据改变容易训练的形状
    keras.layers.Flatten(input_shape=(28,28)),
    # 设置第一个隐藏
    keras.layers.Dense(128,activation=tf.nn.relu),
    # 设置输出层
    keras.layers.Dense(10,activation=tf.nn.softmax)
])

3.训练与评估

1.通过通过调用model的compile方法去配置该模型所需要的训练参数以及评估方法

2.model.compile(optimizer,loss=None,metrics=None)配置训练相关参数

optimizer:优化器,常用的优化器有:

python 复制代码
from tensorflow.python.keras.optimizers import Adadelta
from tensorflow.python.keras.optimizers import Adagrad
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.optimizers import Adamax
from tensorflow.python.keras.optimizers import Nadam
from tensorflow.python.keras.optimizers import Optimizer
from tensorflow.python.keras.optimizers import RMSprop
from tensorflow.python.keras.optimizers import SGD
from tensorflow.python.keras.optimizers import deserialize
from tensorflow.python.keras.optimizers import get
from tensorflow.python.keras.optimizers import serialize
from tensorflow.python.keras.optimizers import AdamOptimizer()

loss:损失类型,类型可以是字符串也可以是该损失函数:

python 复制代码
from tensorflow.python.keras.losses import KLD
from tensorflow.python.keras.losses import KLD as kld
from tensorflow.python.keras.losses import KLD as kullback_leibler_divergence
from tensorflow.python.keras.losses import MAE
from tensorflow.python.keras.losses import MAE as mae
from tensorflow.python.keras.losses import MAE as mean_absolute_error
from tensorflow.python.keras.losses import MAPE
from tensorflow.python.keras.losses import MAPE as mape
from tensorflow.python.keras.losses import MAPE as mean_absolute_percentage_error
from tensorflow.python.keras.losses import MSE
from tensorflow.python.keras.losses import MSE as mean_squared_error
from tensorflow.python.keras.losses import MSE as mse
from tensorflow.python.keras.losses import MSLE
from tensorflow.python.keras.losses import MSLE as mean_squared_logarithmic_error
from tensorflow.python.keras.losses import MSLE as msle
from tensorflow.python.keras.losses import binary_crossentropy
from tensorflow.python.keras.losses import categorical_crossentropy
from tensorflow.python.keras.losses import categorical_hinge
from tensorflow.python.keras.losses import cosine
from tensorflow.python.keras.losses import cosine as cosine_proximity
from tensorflow.python.keras.losses import deserialize
from tensorflow.python.keras.losses import get
from tensorflow.python.keras.losses import hinge
from tensorflow.python.keras.losses import logcosh
from tensorflow.python.keras.losses import poisson
from tensorflow.python.keras.losses import serialize
from tensorflow.python.keras.losses import sparse_categorical_crossentropy
from tensorflow.python.keras.losses import squared_hinge

model.fit():进行训练

model.fit(x=None,y=None,batch_size=None,epochs=None,callbacks=None)

x:训练数据

y:目标值

batch_size:每次训练的样本数

epochs:训练多少次

callbacks:回调函数,比如tensorboard

python 复制代码
model=keras.Sequential([
    # 将输入的数据改变容易训练的形状
    keras.layers.Flatten(input_shape=(28,28)),
    # 设置第一个隐藏
    keras.layers.Dense(128,activation=tf.nn.relu),
    # 设置输出层
    keras.layers.Dense(10,activation=tf.nn.softmax)
])

# 设置模型的优化器为Adam,损失为交叉熵损失,metrics为度量的依据,这里是准确率
model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
# 开始模型训练
model.fit(train_images,train_labels,epochs=1)
# 模型评估
model.evaluate(test_images,test_labels)

二.案例:实现多层神经网络进行时装分类

keras中的数据涵盖10个类别(裤子,衬衫,裙子......),70000张灰度图像

1.读取数据

python 复制代码
from tensorflow import keras
import tensorflow as tf


class FashionClassification:

    def __init__(self):
        (self.train,self.train_label),(self.test,self.test_label)=keras.datasets.fashion_mnist.load_data()
        

2.建立模型

python 复制代码
class FashionClassification:
    
    model=keras.Sequential([
        # 将输入的数据转换形状,图片一般使用[28,28]形状
        keras.layers.Flatten(input_shape=(28,28)),
        # 建立第一给隐藏,128个神经元
        keras.layers.Dense(128,activation=tf.nn.relu),
        # 建立输出层,十个输出类别,使用softmax分类
        keras.layers.Dense(10,activation=tf.nn.softmax)
    ])
    
    def __init__(self):
        (self.train,self.train_label),(self.test,self.test_label)=keras.datasets.fashion_mnist.load_data()

3.设置模型参数,开始训练,评估模型

python 复制代码
    def compile(self):
        # 设置模型使用的优化器,设置损失函数
        FashionClassification.model.Compile(optimizer=tf.train.AdamOptimizer(),
                               loss=tf.keras.losses.sparse_categorical_crossentropy,
                               metrics=['accuracy'])
        return None

    def fit(self):
        # 训练函数,训练五次
        FashionClassification.model.fit(self.train,self.train_label,epochs=5)

        return None

    def evaluate(self):
        # 模型评估,
        test_loss,test_acc=FashionClassification.model.evaluate(self.test,self.test_label)
        # 打印损失和准确率
        print(test_loss,test_acc)
        
        return None

4.保存和加载模型

model.save_weights('保存的路径')

model.load_weights('模型所在的路径')

python 复制代码
if __name__ == '__main__':
    # 创建对象
    snn=FashionClassification()
    # 开始训练
    snn.compile()
    snn.fit()
    snn.evaluate()

    # 保存模型
    FashionClassification.model.save_weights("./ckpt/SingleNN.h5")

5.使用保存的模型进行预测

python 复制代码
    def predict(self):
        # 查看是否已经有训练好的数据,有就直接用用
        if os.path.exists('./data/checkpoint'):
            FashionClassification.model.load_weights('./data/FashionClassification')

        predictions=FashionClassification.predict(self.test)

        # print(np.argmax(predictions,1))

        return predictions
python 复制代码
if __name__ == '__main__':
    # # 创建对象
    snn=FashionClassification()
    # # 开始训练
    # snn.compile()
    # snn.fit()
    # snn.evaluate()

    # 保存模型
    # FashionClassification.model.save_weights("./ckpt/SingleNN.h5")
    # 进行模型预测
    predictions = snn.predict()
    # [10000, 10]
    print(predictions)
    print(np.argmax(predictions, axis=1))

6.添加tensorboard

python 复制代码
 def fit(self):

        # 调用tensorboard回调函数
        board = keras.callbacks.TensorBoard(log_dir='"./graph/', write_graph=True)

        # 训练函数,训练五次
        FashionClassification.model.fit(self.train, self.train, epochs=5,
                           batch_size=128,callbacks=[board])


        return None

四.完整代码

python 复制代码
from tensorflow import keras
import tensorflow as tf
import os


class FashionClassification:

    model=keras.Sequential([
        # 将输入的数据转换形状,图片一般使用[28,28]形状
        keras.layers.Flatten(input_shape=(28,28)),
        # 建立第一给隐藏,128个神经元
        keras.layers.Dense(128,activation=tf.nn.relu),
        # 建立输出层,十个输出类别,使用softmax分类
        keras.layers.Dense(10,activation=tf.nn.softmax)
    ])

    def __init__(self):
        # 返回两个元组,测试集和训练集
        # x_train(60000,784),y_train(60000,1)
        (self.train,self.train_label),(self.test,self.test_label)=keras.datasets.fashion_mnist.load_data()

        # 数据归一化,一般图片处理都要归一化,不然效果会很差
        self.train = self.train / 255.0
        self.test = self.test / 255.0
    def compile(self):
        # 设置模型使用的优化器,设置损失函数
        FashionClassification.model.compile(optimizer=keras.optimizers.Adam(),
                               loss=tf.keras.losses.sparse_categorical_crossentropy,
                               metrics=['accuracy'])
        return None

    def fit(self):

        # 调用tensorboard回调函数
        board = keras.callbacks.TensorBoard(log_dir='"./graph/', write_graph=True)

        # 训练函数,训练五次
        FashionClassification.model.fit(self.train, self.train, epochs=5,
                           batch_size=128,callbacks=[board])


        return None

    def evaluate(self):
        # 模型评估,
        test_loss,test_acc=FashionClassification.model.evaluate(self.test,self.test_label)
        # 打印损失和准确率
        print(test_loss,test_acc)

        return None

    def predict(self):
        # 查看是否已经有训练好的数据,有就直接用用
        if os.path.exists('./data/checkpoint'):
            FashionClassification.model.load_weights('./data/FashionClassification')

        predictions=FashionClassification.predict(self.test)

        # print(np.argmax(predictions,1))

        return predictions


if __name__ == '__main__':
    # 创建对象
    snn=FashionClassification()
    # 开始训练
    snn.compile()
    snn.fit()
    snn.evaluate()

    # 保存模型
    # FashionClassification.model.save_weights("./ckpt/SingleNN.h5")
    # 进行模型预测
    # predictions = snn.predict()
    # # [10000, 10]
    # print(predictions)
    # print(np.argmax(predictions, axis=1))

都看到这里了,点个赞把!!!

相关推荐
今天也要学习吖15 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站15 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI15 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技16 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U16 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙16 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人
THMAIL16 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融
~-~%%17 小时前
从PyTorch到ONNX:模型部署性能提升
人工智能·pytorch·python
xcnn_17 小时前
深度学习基础概念回顾(Pytorch架构)
人工智能·pytorch·深度学习
attitude.x17 小时前
PyTorch 动态图的灵活性与实用技巧
前端·人工智能·深度学习