c++ +Opencv实现车牌自动识别

c++ +Opencv实现车牌自动识别

[1. 图像预处理](#1. 图像预处理)

[2. 车牌定位](#2. 车牌定位)

[3. 字符分割](#3. 字符分割)

[4. 字符识别](#4. 字符识别)

完整流程概述:


|---------------------|
| 🎈边走、边悟🎈迟早会好 |

要用C++和OpenCV实现车牌自动识别,主要流程分为几个步骤:

  1. 图像预处理:提高车牌区域的可见度,方便后续的车牌定位与字符识别。
  2. 车牌定位:通过图像处理和特征提取,定位车牌在图像中的位置。
  3. 字符分割:将车牌区域中的字符逐个分割出来。
  4. 字符识别:利用机器学习算法或者OCR(光学字符识别)技术对车牌字符进行识别。

1. 图像预处理

图像预处理包括灰度化、去噪和边缘检测等操作,目的是减少噪声并突出车牌区域。

cpp 复制代码
#include <opencv2/opencv.hpp>

using namespace cv;

int main() {
    Mat src = imread("car_image.jpg"); // 加载车的图像
    if (src.empty()) {
        std::cout << "Could not open or find the image!" << std::endl;
        return -1;
    }

    Mat gray, blur, edge;
    cvtColor(src, gray, COLOR_BGR2GRAY); // 转为灰度图
    GaussianBlur(gray, blur, Size(5, 5), 0); // 高斯滤波去噪
    Canny(blur, edge, 50, 150); // Canny边缘检测

    imshow("Original", src);
    imshow("Gray", gray);
    imshow("Edge", edge);
    waitKey(0);
    return 0;
}

2. 车牌定位

通过形态学操作(膨胀、腐蚀)以及轮廓检测可以定位车牌区域。

cpp 复制代码
Mat dilated;
Mat element = getStructuringElement(MORPH_RECT, Size(17, 3));
dilate(edge, dilated, element); // 膨胀操作,增强车牌特征

// 找到轮廓
std::vector<std::vector<Point>> contours;
findContours(dilated, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

for (size_t i = 0; i < contours.size(); i++) {
    Rect rect = boundingRect(contours[i]);
    float aspectRatio = (float)rect.width / (float)rect.height;

    // 车牌一般是宽高比在2-6之间的矩形
    if (aspectRatio > 2 && aspectRatio < 6) {
        rectangle(src, rect, Scalar(0, 255, 0), 2);
    }
}

imshow("License Plate Detection", src);
waitKey(0);

3. 字符分割

一旦检测到车牌位置,可以使用投影法或轮廓检测法对车牌区域内的字符进行分割。

cpp 复制代码
Mat plate = src(rect); // 提取车牌区域
threshold(plate, plate, 0, 255, THRESH_BINARY | THRESH_OTSU); // 二值化

4. 字符识别

可以使用Tesseract OCR库来进行字符识别,也可以训练卷积神经网络(CNN)来识别字符。Tesseract使用简单,以下是集成示例:

cpp 复制代码
#include <tesseract/baseapi.h>

tesseract::TessBaseAPI ocr;
ocr.Init(NULL, "eng", tesseract::OEM_LSTM_ONLY);
ocr.SetImage((uchar*)plate.data, plate.cols, plate.rows, 1, plate.step);
std::string outText = ocr.GetUTF8Text();
std::cout << "Recognized Text: " << outText << std::endl;

完整流程概述:

  1. 读取图像并预处理(灰度化、去噪、边缘检测)。
  2. 定位车牌区域(使用形态学操作和轮廓检测)。
  3. 分割字符并预处理(如二值化)。
  4. 字符识别(使用Tesseract或训练好的模型)。

这种方法比较基础,但可以完成简单的车牌识别任务。如果要提高准确率,可以结合深度学习,如使用卷积神经网络(CNN)进行字符识别。

🌟感谢支持 听忆.-CSDN博客

|--------------------|
| 🎈众口难调🎈从心就好 |

相关推荐
shangjian0072 小时前
AI大模型-评价指标-相关术语
人工智能·算法
江河地笑3 小时前
opencv、cmake、vcpkg
人工智能·opencv·计算机视觉
海边夕阳20063 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn
一只会写代码的猫4 小时前
可持续发展中的绿色科技:推动未来的环保创新
大数据·人工智能
胡萝卜3.04 小时前
掌握C++ map:高效键值对操作指南
开发语言·数据结构·c++·人工智能·map
松岛雾奈.2305 小时前
机器学习--PCA降维算法
人工智能·算法·机器学习
5***79005 小时前
机器学习社区机器学习社区:推动技术进步与创新的引擎
人工智能·机器学习
物联网软硬件开发-轨物科技5 小时前
【轨物交流】海盐县组织部调研轨物科技 深化产学研用协同创新
人工智能·科技
Olafur_zbj5 小时前
【AI】矩阵、向量与乘法
人工智能·线性代数·矩阵
kk哥88995 小时前
印刷 / 表单处理专属!Acrobat 2025 AI 加持 PDF 编辑 + 批量处理效率翻倍,安装教程
人工智能