分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

文章目录

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

一、基本原理

WOA-LSSVM 是鲸鱼优化算法(Whale Optimization Algorithm, WOA)与最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)结合的一种分类预测方法。下面将详细介绍WOA和LSSVM的基本原理,然后阐述它们结合的流程。

1. 最小二乘支持向量机(LSSVM)

LSSVM 是支持向量机(SVM)的一个变体,它通过最小化平方损失函数来进行分类和回归任务。LSSVM 的主要特点是其优化问题是一个线性方程组,使得求解速度较快。

LSSVM的基本步骤:

2. 鲸鱼优化算法(WOA)

鲸鱼优化算法是一种基于鲸鱼捕食行为的自然启发式优化算法。WOA 模拟了座头鲸的捕食行为,包括螺旋式捕食、猎物包围等策略,用于优化问题。

WOA的基本步骤:
  1. 初始化

    随机初始化鲸鱼的种群位置。

  2. 适应度评价

    计算每个鲸鱼的适应度值。适应度值通常是目标函数的值。

  3. 更新位置

    根据当前最优解和鲸鱼的更新策略,更新鲸鱼的位置。这些更新策略包括围绕猎物的螺旋运动和包围猎物的行为。

  4. 选择最优解

    更新当前的最优解,并将其作为目标解进行下一轮迭代。

  5. 迭代

    重复步骤2至4直到满足停止准则(如最大迭代次数或适应度阈值)。

3. WOA-LSSVM的结合流程

WOA-LSSVM 结合了 WOA 和 LSSVM 的优点,用于优化 LSSVM 的超参数,以提高分类性能。

结合的流程如下:
  1. 定义优化问题

    设定 LSSVM 的超参数(如正则化参数 ( \gamma ) 和核函数参数),并将其作为 WOA 的优化目标。

  2. 初始化鲸鱼种群

    随机初始化鲸鱼种群的位置,每个鲸鱼的位置代表 LSSVM 的一组超参数。

  3. 训练 LSSVM

    对每个鲸鱼的位置(即每组超参数)进行训练,使用 LSSVM 模型训练数据,并计算模型的分类性能(例如准确率或交叉验证误差)。

  4. 计算适应度

    根据训练结果计算适应度值(通常是分类误差),作为 WOA 的优化目标。

  5. 更新鲸鱼位置

    使用 WOA 算法的更新策略来调整鲸鱼的位置。鲸鱼的位置更新基于当前最优解和个体之间的相互影响。

  6. 选择最优超参数

    迭代更新位置,直到满足停止准则。最终,选择适应度最好的鲸鱼位置对应的超参数作为 LSSVM 的最佳参数。

  7. 最终训练和预测

    使用找到的最佳超参数训练 LSSVM 模型,并进行分类预测。

总结

WOA-LSSVM 通过结合鲸鱼优化算法和最小二乘支持向量机,利用 WOA 优化 LSSVM 的超参数,从而提高分类性能。WOA 提供了有效的全局优化能力,而 LSSVM 通过最小化平方损失函数来提高模型训练的效率和准确性。结合这两者可以获得更优的分类结果。

二、实验结果

WOA-LSSVM实验结果:


三、核心代码

matlab 复制代码
%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于

优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM--Attention,VMD--LSTM,PCA--BP等等

用于数据的分类,时序,回归预测。

多特征输入,单输出,多输出

相关推荐
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
其实吧39 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
夏天里的肥宅水12 小时前
机器学习3_支持向量机_线性不可分——MOOC
人工智能·机器学习·支持向量机
m0_7434148514 小时前
【天线&其他】大疆无人机热成像人员目标检测系统源码&数据集全套:改进yolo11-bifpn-SDI
分类
spssau15 小时前
多分类logistic回归分析案例教程
分类·数据挖掘·数据分析·回归·回归分析·logistic回归·spssau
快乐点吧16 小时前
BERT 模型在句子分类任务中的作用分析笔记
笔记·分类·bert
Matlab程序猿小助手17 小时前
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
开发语言·嵌入式硬件·算法·matlab·机器人
Yeats_Liao21 小时前
昇思大模型平台打卡体验活动:基于MindSpore实现GPT1影评分类
gpt·分类·数据挖掘
IT猿手1 天前
基于卷积神经网络(CNN)的时间序列预测,15个输入1个输出,可以更改数据集,MATLAB代码
人工智能·深度学习·神经网络·算法·matlab·cnn
其实吧31 天前
基于MATLAB的运动车辆跟踪检测系统
开发语言·matlab