分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

文章目录

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

一、基本原理

WOA-LSSVM 是鲸鱼优化算法(Whale Optimization Algorithm, WOA)与最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)结合的一种分类预测方法。下面将详细介绍WOA和LSSVM的基本原理,然后阐述它们结合的流程。

1. 最小二乘支持向量机(LSSVM)

LSSVM 是支持向量机(SVM)的一个变体,它通过最小化平方损失函数来进行分类和回归任务。LSSVM 的主要特点是其优化问题是一个线性方程组,使得求解速度较快。

LSSVM的基本步骤:

2. 鲸鱼优化算法(WOA)

鲸鱼优化算法是一种基于鲸鱼捕食行为的自然启发式优化算法。WOA 模拟了座头鲸的捕食行为,包括螺旋式捕食、猎物包围等策略,用于优化问题。

WOA的基本步骤:
  1. 初始化

    随机初始化鲸鱼的种群位置。

  2. 适应度评价

    计算每个鲸鱼的适应度值。适应度值通常是目标函数的值。

  3. 更新位置

    根据当前最优解和鲸鱼的更新策略,更新鲸鱼的位置。这些更新策略包括围绕猎物的螺旋运动和包围猎物的行为。

  4. 选择最优解

    更新当前的最优解,并将其作为目标解进行下一轮迭代。

  5. 迭代

    重复步骤2至4直到满足停止准则(如最大迭代次数或适应度阈值)。

3. WOA-LSSVM的结合流程

WOA-LSSVM 结合了 WOA 和 LSSVM 的优点,用于优化 LSSVM 的超参数,以提高分类性能。

结合的流程如下:
  1. 定义优化问题

    设定 LSSVM 的超参数(如正则化参数 ( \gamma ) 和核函数参数),并将其作为 WOA 的优化目标。

  2. 初始化鲸鱼种群

    随机初始化鲸鱼种群的位置,每个鲸鱼的位置代表 LSSVM 的一组超参数。

  3. 训练 LSSVM

    对每个鲸鱼的位置(即每组超参数)进行训练,使用 LSSVM 模型训练数据,并计算模型的分类性能(例如准确率或交叉验证误差)。

  4. 计算适应度

    根据训练结果计算适应度值(通常是分类误差),作为 WOA 的优化目标。

  5. 更新鲸鱼位置

    使用 WOA 算法的更新策略来调整鲸鱼的位置。鲸鱼的位置更新基于当前最优解和个体之间的相互影响。

  6. 选择最优超参数

    迭代更新位置,直到满足停止准则。最终,选择适应度最好的鲸鱼位置对应的超参数作为 LSSVM 的最佳参数。

  7. 最终训练和预测

    使用找到的最佳超参数训练 LSSVM 模型,并进行分类预测。

总结

WOA-LSSVM 通过结合鲸鱼优化算法和最小二乘支持向量机,利用 WOA 优化 LSSVM 的超参数,从而提高分类性能。WOA 提供了有效的全局优化能力,而 LSSVM 通过最小化平方损失函数来提高模型训练的效率和准确性。结合这两者可以获得更优的分类结果。

二、实验结果

WOA-LSSVM实验结果:


三、核心代码

matlab 复制代码
%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于

优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM--Attention,VMD--LSTM,PCA--BP等等

用于数据的分类,时序,回归预测。

多特征输入,单输出,多输出

相关推荐
机器学习之心6 小时前
MATLAB基于变权理论和灰色云模型的海岛旅游地生态安全评价
安全·matlab·旅游·灰色云模型
tyatyatya7 小时前
对比传统方法和深度学习方法在MATLAB视觉检测中的优缺点
深度学习·matlab·视觉检测
qq_254674417 小时前
回归、分类、聚类
分类·回归·聚类
MATLAB代码顾问8 小时前
MATLAB实现TCN神经网络数值预测
开发语言·matlab
B站_计算机毕业设计之家9 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Evand J11 小时前
【MATLAB例程】基于噪声协方差自适应的互补滤波器方法vs标准互补滤波,用于融合加速度计和陀螺仪数据,估计角度
开发语言·matlab
ytttr87312 小时前
64QAM信号的数字预失真处理(MATLAB实现)
开发语言·matlab
元直数字电路验证16 小时前
感知机:乳腺癌分类实现 & K 均值聚类:从零实现
均值算法·分类·聚类
油泼辣子多加18 小时前
【实战】自然语言处理--长文本分类(3)HAN算法
算法·自然语言处理·分类
机器学习之心20 小时前
MATLAB遗传算法优化RVFL神经网络回归预测(随机函数链接神经网络)
神经网络·matlab·回归