pytorch torch.triu函数介绍

torch.triu 是 PyTorch 提供的一个函数,用于生成矩阵的上三角部分。它的名称来源于 "triangular upper"(上三角形),作用是将矩阵的下三角部分置为零,只保留对角线及其上方的元素。

函数签名

复制代码
torch.triu(input, diagonal=0) → Tensor

参数

  • input : 输入的张量,一般是一个二维矩阵(Tensor)。
  • diagonal : 对角线的偏移量,默认值为 0
    • diagonal=0 时,保留主对角线及其上方的元素。
    • diagonal>0 时,向上偏移保留的对角线。偏移的值决定从上三角的第几行开始保留。
    • diagonal<0 时,向下偏移保留的对角线,即包括主对角线下方的部分。

返回值

返回一个与 input 形状相同的张量,但下三角部分的值被置为零。

示例

复制代码
import torch

# 创建一个 3x3 的张量
A = torch.tensor([[1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9]])

# 获取上三角部分
upper_triangular = torch.triu(A)

print(upper_triangular)

在这个例子中,torch.triu 保留了矩阵 A 的主对角线及其上方的元素,而将下方的元素置为零。

偏移对角线示例

如果我们设置 diagonal1,则只保留主对角线上方的元素:

复制代码
upper_triangular = torch.triu(A, diagonal=1)

print(upper_triangular)

输出为:

复制代码
tensor([[0, 2, 3],
        [0, 0, 6],
        [0, 0, 0]])

应用场景

  • 矩阵运算 : torch.triu 在需要使用上三角矩阵进行特定计算时很有用,比如 Cholesky 分解、图卷积中的邻接矩阵处理。
  • 屏蔽下三角部分: 在一些序列处理任务中,常用上三角掩码来忽略无关的值,例如在自注意力机制中用来避免提前看到未来的序列。
相关推荐
alpszero几秒前
YOLO11解决方案之物体模糊探索
人工智能·python·opencv·计算机视觉·yolo11
vlln7 分钟前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习
伊织code14 分钟前
PyTorch API 6 - 编译、fft、fx、函数转换、调试、符号追踪
pytorch·python·ai·api·-·6
奋斗者1号15 分钟前
机器学习之决策树与决策森林:机器学习中的强大工具
人工智能·决策树·机器学习
struggle202517 分钟前
continue通过我们的开源 IDE 扩展和模型、规则、提示、文档和其他构建块中心,创建、共享和使用自定义 AI 代码助手
javascript·ide·python·typescript·开源
多巴胺与内啡肽.25 分钟前
OpenCV进阶操作:风格迁移以及DNN模块解析
人工智能·opencv·dnn
来自星星的坤28 分钟前
深入理解 NumPy:Python 科学计算的基石
开发语言·python·numpy
小声读源码1 小时前
【技巧】使用UV创建python项目的开发环境
开发语言·python·uv·dify
程序员杰哥1 小时前
自动化测试基础知识详解
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
zm-v-159304339861 小时前
解锁遥感数据密码:DeepSeek、Python 与 OpenCV 的协同之力
开发语言·python·opencv