pytorch torch.triu函数介绍

torch.triu 是 PyTorch 提供的一个函数,用于生成矩阵的上三角部分。它的名称来源于 "triangular upper"(上三角形),作用是将矩阵的下三角部分置为零,只保留对角线及其上方的元素。

函数签名

复制代码
torch.triu(input, diagonal=0) → Tensor

参数

  • input : 输入的张量,一般是一个二维矩阵(Tensor)。
  • diagonal : 对角线的偏移量,默认值为 0
    • diagonal=0 时,保留主对角线及其上方的元素。
    • diagonal>0 时,向上偏移保留的对角线。偏移的值决定从上三角的第几行开始保留。
    • diagonal<0 时,向下偏移保留的对角线,即包括主对角线下方的部分。

返回值

返回一个与 input 形状相同的张量,但下三角部分的值被置为零。

示例

复制代码
import torch

# 创建一个 3x3 的张量
A = torch.tensor([[1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9]])

# 获取上三角部分
upper_triangular = torch.triu(A)

print(upper_triangular)

在这个例子中,torch.triu 保留了矩阵 A 的主对角线及其上方的元素,而将下方的元素置为零。

偏移对角线示例

如果我们设置 diagonal1,则只保留主对角线上方的元素:

复制代码
upper_triangular = torch.triu(A, diagonal=1)

print(upper_triangular)

输出为:

复制代码
tensor([[0, 2, 3],
        [0, 0, 6],
        [0, 0, 0]])

应用场景

  • 矩阵运算 : torch.triu 在需要使用上三角矩阵进行特定计算时很有用,比如 Cholesky 分解、图卷积中的邻接矩阵处理。
  • 屏蔽下三角部分: 在一些序列处理任务中,常用上三角掩码来忽略无关的值,例如在自注意力机制中用来避免提前看到未来的序列。
相关推荐
Dev7z25 分钟前
原创论文:基于LSTM的共享单车需求预测研究
人工智能·rnn·lstm
nita张30 分钟前
2026年2月战略定位公司案例分享
大数据·人工智能·python
All The Way North-34 分钟前
【LSTM系列·终篇】PyTorch nn.LSTM 终极指南:从API原理到双向多层实战,彻底告别维度错误!
pytorch·rnn·lstm·多层lstm·api详解·序列模型·双向lstm
prince_zxill36 分钟前
New API 详解:新一代开源大模型统一网关与 AI 资产管理系统(深度 6000 字指南)
人工智能·开源
开发者导航1 小时前
精选高质量网址资源的高效聚合综合性的网址导航:跳跳兔导航网
服务器·人工智能·程序人生·搜索引擎·开源软件
狮子座明仔1 小时前
给大模型装一台“事实核查显微镜“:RLFKV 如何用细粒度知识验证治愈金融 RAG 幻觉
人工智能·语言模型·自然语言处理·金融
民乐团扒谱机3 小时前
【深度横评】AI记忆功能全平台拆解:ChatGPT/Claude/Gemini/国产大模型谁真懂你?附隐私避坑指南
人工智能·chatgpt
清水白石0089 小时前
隔离的艺术:用 `unittest.mock` 驯服外部依赖,让测试真正可控
python
gorgeous(๑>؂<๑)9 小时前
【ICLR26-金玥明-新国立】MedAgent-Pro:通过推理智能体工作流实现基于证据的多模态医疗诊断
人工智能