Introduction
Finding correspondences between keypoints is a critical step in many computer vision applications. It can be used to align images when constructing a panorama from lots of separate photogtraps, and it is
used to find point correspondences between keypoints detetected in multiple views of a scene.
iuww520iuww520iuww520iuww520iuww520iuww520iuww520iuww520
This assignment uses a dataset generated from many views of the Trevi fountain in Rome. Finding correspondences between detected keypoints is a critical step in the pipeline for reconstructing a 3D representation of the fountain from individual photographs.
The dataset in this assignment is generated as a set of pairs of image patches taken centred at detected keypoints. The image patches are 64x64 pixels each and each training sample is made of two patches placed side by side to make a 128x64 image. For half the training set (10,000 examples in the '1good' subdirectory) the two patches are from two separate views of the same keypoint. For the other half (10,000 examples in the '0bad' subdirectory) the two patches are from two different keypoints. Figure
1 shows an example of each of these. The validation directory is similarly structured but contains four times as many non-matching pairs (2000 examples in '0bad') as matching pairs (500 examples in '1good').
Figure 1: Corresponding (left) and non-corresponding (right) pairs of image patches Your task is to create and train some neural networks that can tackle the problem of determining whether the two patches correspond or not.
1. Baseline Neural Network [2 pt]
Run the baseline neural network implementation in the provided python notebook and in your report,
you should include the loss and accuracy curves for the training and validation sets in your report and
discuss what these imply about the baseline model.
The validation set contains more bad examples than good. Why might this be a sensible way of
testing for the task of finding feature correspondences? Should the training environment also reflect
this imbalance?
2. Regularizing your Neural Network [2pt]
To regularize the network, your should try adding a regularization layer (see the Keras documenation for these layers). Try adding a Dropout() layer after Flatten() and try different rate values to see what the effect of this parameter is. Include the loss and accuracy plots in your report for three different
choices of the rate parameter. Describe the changes you see in these loss and accuracy plots in your report and suggest what the best choice of rate value is from the three you have reported.
3. Convolutional Neural Network [3pt]
Design a Convolutional Neural Network to solve this challenge. If you use Conv2D() layers imme diately after the LayerNormalization layer these convolutions will apply identically to both image patches in each input sample. Try using one or two Conv2D() layers with relu activations. You should explore the value of having different numbers of filters, kernel sizes, and strides before the Flatten() layer.
Briefly describe the set of settings you tried in your report in a table (this should be around 10 settings).
For each setting, report the final training loss and accuracy as well as the validation loss and accuracy.
Include a discussion of the results of these experiments in your report. Identify your best performing
design and discuss why you think this may have been best.
Computer Vision COMP90086
jia V iuww5202024-09-08 19:14
相关推荐
程序员小袁16 分钟前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo飞哥数智坊1 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度新智元2 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!IT_陈寒2 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%阿里云云原生2 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场Memene摸鱼日报3 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fastxiaohouzi1122333 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端用户125205597083 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题Juchecar3 小时前
一文讲清 nn.LayerNorm 层归一化martinzh3 小时前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通