Introduction
Finding correspondences between keypoints is a critical step in many computer vision applications. It can be used to align images when constructing a panorama from lots of separate photogtraps, and it is
used to find point correspondences between keypoints detetected in multiple views of a scene.
iuww520iuww520iuww520iuww520iuww520iuww520iuww520iuww520
This assignment uses a dataset generated from many views of the Trevi fountain in Rome. Finding correspondences between detected keypoints is a critical step in the pipeline for reconstructing a 3D representation of the fountain from individual photographs.
The dataset in this assignment is generated as a set of pairs of image patches taken centred at detected keypoints. The image patches are 64x64 pixels each and each training sample is made of two patches placed side by side to make a 128x64 image. For half the training set (10,000 examples in the '1good' subdirectory) the two patches are from two separate views of the same keypoint. For the other half (10,000 examples in the '0bad' subdirectory) the two patches are from two different keypoints. Figure
1 shows an example of each of these. The validation directory is similarly structured but contains four times as many non-matching pairs (2000 examples in '0bad') as matching pairs (500 examples in '1good').
Figure 1: Corresponding (left) and non-corresponding (right) pairs of image patches Your task is to create and train some neural networks that can tackle the problem of determining whether the two patches correspond or not.
1. Baseline Neural Network [2 pt]
Run the baseline neural network implementation in the provided python notebook and in your report,
you should include the loss and accuracy curves for the training and validation sets in your report and
discuss what these imply about the baseline model.
The validation set contains more bad examples than good. Why might this be a sensible way of
testing for the task of finding feature correspondences? Should the training environment also reflect
this imbalance?
2. Regularizing your Neural Network [2pt]
To regularize the network, your should try adding a regularization layer (see the Keras documenation for these layers). Try adding a Dropout() layer after Flatten() and try different rate values to see what the effect of this parameter is. Include the loss and accuracy plots in your report for three different
choices of the rate parameter. Describe the changes you see in these loss and accuracy plots in your report and suggest what the best choice of rate value is from the three you have reported.
3. Convolutional Neural Network [3pt]
Design a Convolutional Neural Network to solve this challenge. If you use Conv2D() layers imme diately after the LayerNormalization layer these convolutions will apply identically to both image patches in each input sample. Try using one or two Conv2D() layers with relu activations. You should explore the value of having different numbers of filters, kernel sizes, and strides before the Flatten() layer.
Briefly describe the set of settings you tried in your report in a table (this should be around 10 settings).
For each setting, report the final training loss and accuracy as well as the validation loss and accuracy.
Include a discussion of the results of these experiments in your report. Identify your best performing
design and discuss why you think this may have been best.
Computer Vision COMP90086
jia V iuww5202024-09-08 19:14
相关推荐
十铭忘10 小时前
SAM2跟踪的理解14——mask decoderHyperAI超神经10 小时前
入选NeurIPS 2025,智源/北大/北邮提出多流控制视频生成框架,基于音频解混实现精确音画同步草莓熊Lotso10 小时前
C++ 异常完全指南:从语法到实战,优雅处理程序错误yi个名字10 小时前
智能编码新时代:Vibe Coding与MCP驱动的工作流IDE革命IT_陈寒10 小时前
Python性能优化实战:7个让代码提速300%的冷门技巧(附基准测试)熊猫钓鱼>_>10 小时前
多智能体协作:构建下一代高智能应用的技术范式likeshop 好像科技10 小时前
AI知识库架构深度解析:智能体记忆与学习的智慧核心啊阿狸不会拉杆11 小时前
《数字图像处理》第 12 章 - 图像模式分类Robot侠11 小时前
ROS1从入门到精通 15: 机器人视觉 - 图像处理与计算机视觉Robot侠11 小时前
赋予 AI 记忆:在 RTX 3090 上搭建本地 RAG 知识库问答系统