Computer Vision COMP90086

Introduction
Finding correspondences between keypoints is a critical step in many computer vision applications. It can be used to align images when constructing a panorama from lots of separate photogtraps, and it is
used to find point correspondences between keypoints detetected in multiple views of a scene.
iuww520iuww520iuww520iuww520iuww520iuww520iuww520iuww520
This assignment uses a dataset generated from many views of the Trevi fountain in Rome. Finding correspondences between detected keypoints is a critical step in the pipeline for reconstructing a 3D representation of the fountain from individual photographs.
The dataset in this assignment is generated as a set of pairs of image patches taken centred at detected keypoints. The image patches are 64x64 pixels each and each training sample is made of two patches placed side by side to make a 128x64 image. For half the training set (10,000 examples in the '1good' subdirectory) the two patches are from two separate views of the same keypoint. For the other half (10,000 examples in the '0bad' subdirectory) the two patches are from two different keypoints. Figure
1 shows an example of each of these. The validation directory is similarly structured but contains four times as many non-matching pairs (2000 examples in '0bad') as matching pairs (500 examples in '1good').
Figure 1: Corresponding (left) and non-corresponding (right) pairs of image patches Your task is to create and train some neural networks that can tackle the problem of determining whether the two patches correspond or not.
1. Baseline Neural Network [2 pt]
Run the baseline neural network implementation in the provided python notebook and in your report,
you should include the loss and accuracy curves for the training and validation sets in your report and
discuss what these imply about the baseline model.
The validation set contains more bad examples than good. Why might this be a sensible way of
testing for the task of finding feature correspondences? Should the training environment also reflect
this imbalance?
2. Regularizing your Neural Network [2pt]
To regularize the network, your should try adding a regularization layer (see the Keras documenation for these layers). Try adding a Dropout() layer after Flatten() and try different rate values to see what the effect of this parameter is. Include the loss and accuracy plots in your report for three different
choices of the rate parameter. Describe the changes you see in these loss and accuracy plots in your report and suggest what the best choice of rate value is from the three you have reported.
3. Convolutional Neural Network [3pt]
Design a Convolutional Neural Network to solve this challenge. If you use Conv2D() layers imme diately after the LayerNormalization layer these convolutions will apply identically to both image patches in each input sample. Try using one or two Conv2D() layers with relu activations. You should explore the value of having different numbers of filters, kernel sizes, and strides before the Flatten() layer.
Briefly describe the set of settings you tried in your report in a table (this should be around 10 settings).
For each setting, report the final training loss and accuracy as well as the validation loss and accuracy.
Include a discussion of the results of these experiments in your report. Identify your best performing
design and discuss why you think this may have been best.

相关推荐
开MINI的工科男29 分钟前
深蓝学院-- 量产自动驾驶中的规划控制算法 小鹏
人工智能·机器学习·自动驾驶
AI大模型知识分享2 小时前
Prompt最佳实践|如何用参考文本让ChatGPT答案更精准?
人工智能·深度学习·机器学习·chatgpt·prompt·gpt-3
张人玉3 小时前
人工智能——猴子摘香蕉问题
人工智能
草莓屁屁我不吃4 小时前
Siri因ChatGPT-4o升级:我们的个人信息还安全吗?
人工智能·安全·chatgpt·chatgpt-4o
小言从不摸鱼4 小时前
【AI大模型】ChatGPT模型原理介绍(下)
人工智能·python·深度学习·机器学习·自然语言处理·chatgpt
AI科研视界4 小时前
ChatGPT+2:修订初始AI安全性和超级智能假设
人工智能·chatgpt
霍格沃兹测试开发学社测试人社区4 小时前
人工智能 | 基于ChatGPT开发人工智能服务平台
软件测试·人工智能·测试开发·chatgpt
小R资源4 小时前
3款免费的GPT类工具
人工智能·gpt·chatgpt·ai作画·ai模型·国内免费
artificiali7 小时前
Anaconda配置pytorch的基本操作
人工智能·pytorch·python
酱香编程,风雨兼程8 小时前
深度学习——基础知识
人工智能·深度学习