Computer Vision COMP90086

Introduction
Finding correspondences between keypoints is a critical step in many computer vision applications. It can be used to align images when constructing a panorama from lots of separate photogtraps, and it is
used to find point correspondences between keypoints detetected in multiple views of a scene.
iuww520iuww520iuww520iuww520iuww520iuww520iuww520iuww520
This assignment uses a dataset generated from many views of the Trevi fountain in Rome. Finding correspondences between detected keypoints is a critical step in the pipeline for reconstructing a 3D representation of the fountain from individual photographs.
The dataset in this assignment is generated as a set of pairs of image patches taken centred at detected keypoints. The image patches are 64x64 pixels each and each training sample is made of two patches placed side by side to make a 128x64 image. For half the training set (10,000 examples in the '1good' subdirectory) the two patches are from two separate views of the same keypoint. For the other half (10,000 examples in the '0bad' subdirectory) the two patches are from two different keypoints. Figure
1 shows an example of each of these. The validation directory is similarly structured but contains four times as many non-matching pairs (2000 examples in '0bad') as matching pairs (500 examples in '1good').
Figure 1: Corresponding (left) and non-corresponding (right) pairs of image patches Your task is to create and train some neural networks that can tackle the problem of determining whether the two patches correspond or not.
1. Baseline Neural Network [2 pt]
Run the baseline neural network implementation in the provided python notebook and in your report,
you should include the loss and accuracy curves for the training and validation sets in your report and
discuss what these imply about the baseline model.
The validation set contains more bad examples than good. Why might this be a sensible way of
testing for the task of finding feature correspondences? Should the training environment also reflect
this imbalance?
2. Regularizing your Neural Network [2pt]
To regularize the network, your should try adding a regularization layer (see the Keras documenation for these layers). Try adding a Dropout() layer after Flatten() and try different rate values to see what the effect of this parameter is. Include the loss and accuracy plots in your report for three different
choices of the rate parameter. Describe the changes you see in these loss and accuracy plots in your report and suggest what the best choice of rate value is from the three you have reported.
3. Convolutional Neural Network [3pt]
Design a Convolutional Neural Network to solve this challenge. If you use Conv2D() layers imme diately after the LayerNormalization layer these convolutions will apply identically to both image patches in each input sample. Try using one or two Conv2D() layers with relu activations. You should explore the value of having different numbers of filters, kernel sizes, and strides before the Flatten() layer.
Briefly describe the set of settings you tried in your report in a table (this should be around 10 settings).
For each setting, report the final training loss and accuracy as well as the validation loss and accuracy.
Include a discussion of the results of these experiments in your report. Identify your best performing
design and discuss why you think this may have been best.

相关推荐
崔庆才丨静觅7 分钟前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448371 小时前
机器学习基本概念与梯度下降
人工智能
水如烟1 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿1 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——1 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
十二AI编程2 小时前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator3 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能
OpenMiniServer3 小时前
当 AI 成为 Git 里的一个“人”
人工智能·git
bryant_meng4 小时前
【DLNR】《High-frequency Stereo Matching Network》
人工智能·深度学习·计算机视觉·stereo matching·dlnr