如何本地搭建Whisper语音识别模型

要在本地搭建Whisper语音识别模型,您需要以下几个步骤:

步骤一:系统准备

  1. 操作系统: 建议使用Ubuntu 20.04或以上版本,确保系统足够稳定和兼容。
  2. 硬件配置: 最好有一个强大的GPU,因为语音识别涉及大量的计算工作。推荐NVIDIA GPU,并安装CUDA。

步骤二:安装必要的软件

  1. Python环境: 确保安装了Python 3.7或以上版本。

    sudo apt update

sudo apt install python3 python3-pip

2、Git: 用于克隆Whisper项目的代码仓库。

复制代码
sudo apt install git 
  3、CUDA和cuDNN: 如果有NVIDIA GPU,可以进一步加速模型推理。

步骤三:克隆Whisper项目代码

  1. 打开终端,克隆Whisper项目的代码库。

git clone https://github.com/openai/whisper.git

cd whisper

步骤四:设置虚拟环境并安装依赖

  1. 创建并激活Python虚拟环境。

python3 -m venv whisper_env

source whisper_env/bin/activate

2、安装项目所需的Python包。

pip install -r requirements.txt

步骤五:下载预训练模型

Whisper提供了多种预训练模型,可以从官网或项目页面下载相应的模型文件并放置在指定目录。

步骤六:运行模型

  1. 使用以下命令运行模型进行语音识别。可以通过传入不同的参数来处理不同的音频文件和任务。

    复制代码
    python3 run_whisper.py --input your_audio_file.wav --model base

注意事项

  • CUDA问题: 如果在使用过程中遇到CUDA相关的问题,需要确保CUDA和cuDNN版本与所安装的PyTorch版本兼容。
  • 内存需求: 模型对内存和显存的需求较高,在处理大规模音频数据时可能需要调整。

至此,您应该可以在本地成功搭建并运行Whisper语音识别模型。如果遇到任何问题,可以查阅官方文档或相关的社区支持资源。

相关推荐
开开心心就好几秒前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
TechWJ1 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
凌杰1 分钟前
AI 学习笔记:LLM 的部署与测试
人工智能
心易行者4 分钟前
在 Claude 4.6 发布的当下,一个不懂编程的人聊聊 Claude Code:当 AI 终于学会自己动手干活
人工智能
子榆.4 分钟前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
爱喝白开水a4 分钟前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
学易8 分钟前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
空白诗8 分钟前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
空白诗15 分钟前
CANN ops-nn 算子解读:AIGC 风格迁移中的 BatchNorm 与 InstanceNorm 实现
人工智能·ai
新芒15 分钟前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能