python计算机视觉——第八章 图像内容分类

本章介绍图像分类和图像内容分类算法。

8.1 K邻近分类法(KNN)

KNN(K-Nearest Neighbor ,K邻近分类法),把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分类效

果较好,但是也有很多弊端:与K-means 聚类算法一样,需要预先设定k 值,k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。

将定义的类对象添加到名为knn.py 的文件里:

复制代码
class KnnClassifier(object):
    def __init__(self,labels,samples):
        """ 使用训练数据初始化分类器"""
        self.labels = labels
        self.samples = samples

    def classify(self,point,k=3):
        """ 在训练数据上采用k 近邻分类,并返回标记"""
        # 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        # 对它们进行排序
        ndx = dist.argsort()
        # 用字典存储k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1

        return max(votes)
    
    def L2dist(p1,p2):
        return sqrt( sum( (p1-p2)**2) )
相关推荐
蹦蹦跳跳真可爱5891 小时前
Python----OpenCV(图像分割——彩色图像分割,GrabCut算法分割图像)
开发语言·图像处理·人工智能·python·opencv·计算机视觉
Chef_Chen3 小时前
从0开始学习计算机视觉--Day09--卷积与池化
深度学习·学习·计算机视觉
想成为风筝10 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
千宇宙航11 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
Coovally AI模型快速验证13 小时前
基于YOLOv11的CF-YOLO,如何突破无人机小目标检测?
人工智能·神经网络·yolo·目标检测·计算机视觉·cnn·无人机
千宇宙航14 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十二课——图像增强的FPGA实现
图像处理·计算机视觉·fpga开发
莱茶荼菜14 小时前
虚拟项目[3D物体测量]
数码相机·计算机视觉·3d
徒慕风流19 小时前
使用球体模型模拟相机成像:地面与天空的可见性判断与纹理映射
算法·计算机视觉
CoovallyAIHub1 天前
从大象到老鼠,FPN如何一次搞定?多尺度检测核心解析
深度学习·算法·计算机视觉
Ronin-Lotus1 天前
模型训练与部署注意事项篇---resize
人工智能·深度学习·计算机视觉