python计算机视觉——第八章 图像内容分类

本章介绍图像分类和图像内容分类算法。

8.1 K邻近分类法(KNN)

KNN(K-Nearest Neighbor ,K邻近分类法),把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分类效

果较好,但是也有很多弊端:与K-means 聚类算法一样,需要预先设定k 值,k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。

将定义的类对象添加到名为knn.py 的文件里:

复制代码
class KnnClassifier(object):
    def __init__(self,labels,samples):
        """ 使用训练数据初始化分类器"""
        self.labels = labels
        self.samples = samples

    def classify(self,point,k=3):
        """ 在训练数据上采用k 近邻分类,并返回标记"""
        # 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        # 对它们进行排序
        ndx = dist.argsort()
        # 用字典存储k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1

        return max(votes)
    
    def L2dist(p1,p2):
        return sqrt( sum( (p1-p2)**2) )
相关推荐
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
kisshuan123968 小时前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
_codemonster9 小时前
高斯卷积的可加性定理
人工智能·计算机视觉
UnderTurrets13 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
yugi98783814 小时前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
MM_MS14 小时前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
weixin_4657909116 小时前
光伏不确定性场景分析:从LHS场景生成到k-means场景削减
计算机视觉
程序员爱德华16 小时前
镜面检测 Mirror Detection
人工智能·计算机视觉·语义分割·镜面检测
_codemonster16 小时前
计算机视觉入门到实战系列(九) SIFT算法(尺度空间、极值点判断)
深度学习·算法·计算机视觉