python计算机视觉——第八章 图像内容分类

本章介绍图像分类和图像内容分类算法。

8.1 K邻近分类法(KNN)

KNN(K-Nearest Neighbor ,K邻近分类法),把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分类效

果较好,但是也有很多弊端:与K-means 聚类算法一样,需要预先设定k 值,k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。

将定义的类对象添加到名为knn.py 的文件里:

复制代码
class KnnClassifier(object):
    def __init__(self,labels,samples):
        """ 使用训练数据初始化分类器"""
        self.labels = labels
        self.samples = samples

    def classify(self,point,k=3):
        """ 在训练数据上采用k 近邻分类,并返回标记"""
        # 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        # 对它们进行排序
        ndx = dist.argsort()
        # 用字典存储k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1

        return max(votes)
    
    def L2dist(p1,p2):
        return sqrt( sum( (p1-p2)**2) )
相关推荐
sali-tec4 分钟前
C# 基于OpenCv的视觉工作流-章10-中值滤波
图像处理·人工智能·opencv·算法·计算机视觉
s090713618 分钟前
【计算机视觉】详解立体匹配算法:原理、公式与核心策略
人工智能·算法·计算机视觉·立体匹配
Coovally AI模型快速验证20 分钟前
YOLO-Maste开源:首个MoE加速加速实时检测,推理提速17.8%
人工智能·yolo·计算机视觉·百度·人机交互
CoovallyAIHub35 分钟前
2026 CES 如何用“视觉”改变生活?机器的“视觉大脑”被点亮
深度学习·算法·计算机视觉
sunsunyu031 小时前
基于OpenCV的图像重复检测算法实战
python·计算机视觉
淬炼之火1 小时前
笔记:场景图生成综述(Scene Understanding)
图像处理·笔记·计算机视觉·知识图谱·场景感知
这儿有一堆花1 小时前
从文本到像素:AI图像生成的底层逻辑解析
人工智能·机器学习·计算机视觉
AI即插即用2 小时前
超分辨率重建 | 2025 FIWHN:轻量级超分辨率 SOTA!基于“宽残差”与 Transformer 混合架构的高效网络(代码实践)
图像处理·人工智能·深度学习·计算机视觉·transformer·超分辨率重建
这张生成的图像能检测吗2 小时前
(论文速读)Set Transformer: 一种基于注意的置换不变神经网络框架
人工智能·深度学习·神经网络·计算机视觉·transformer