python计算机视觉——第八章 图像内容分类

本章介绍图像分类和图像内容分类算法。

8.1 K邻近分类法(KNN)

KNN(K-Nearest Neighbor ,K邻近分类法),把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分类效

果较好,但是也有很多弊端:与K-means 聚类算法一样,需要预先设定k 值,k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。

将定义的类对象添加到名为knn.py 的文件里:

复制代码
class KnnClassifier(object):
    def __init__(self,labels,samples):
        """ 使用训练数据初始化分类器"""
        self.labels = labels
        self.samples = samples

    def classify(self,point,k=3):
        """ 在训练数据上采用k 近邻分类,并返回标记"""
        # 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        # 对它们进行排序
        ndx = dist.argsort()
        # 用字典存储k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1

        return max(votes)
    
    def L2dist(p1,p2):
        return sqrt( sum( (p1-p2)**2) )
相关推荐
观无26 分钟前
VisionPro 视觉检测工具基础知识点
人工智能·计算机视觉·视觉检测
童话名剑3 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
Chef_Chen3 小时前
数据科学每日总结--Day43--计算机视觉
人工智能·计算机视觉
北京地铁1号线4 小时前
人工智能岗位招聘专业笔试试卷及答案
人工智能·深度学习·计算机视觉·大语言模型
AI小怪兽5 小时前
YOLO26:面向实时目标检测的关键架构增强与性能基准测试
人工智能·yolo·目标检测·计算机视觉·目标跟踪·架构
岑梓铭5 小时前
YOLO深度学习(计算机视觉)—毕设笔记(yolo训练效率加快)
人工智能·笔记·深度学习·神经网络·yolo·计算机视觉
Ryan老房6 小时前
从LabelImg到TjMakeBot-标注工具的进化史
人工智能·yolo·目标检测·计算机视觉·ai
junziruruo6 小时前
损失函数(以FMTrack频率感知交互与多专家模型的损失为例)
图像处理·深度学习·学习·计算机视觉
li星野6 小时前
OpenCV4X学习-图像边缘检测、图像分割
深度学习·学习·计算机视觉
2501_941322036 小时前
【论文改进】柑桔目标检测:YOLO11-Seg与FocalModulation融合方案
人工智能·目标检测·计算机视觉