python计算机视觉——第八章 图像内容分类

本章介绍图像分类和图像内容分类算法。

8.1 K邻近分类法(KNN)

KNN(K-Nearest Neighbor ,K邻近分类法),把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由k近邻对指派到哪个类进行投票。这种方法通常分类效

果较好,但是也有很多弊端:与K-means 聚类算法一样,需要预先设定k 值,k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。

将定义的类对象添加到名为knn.py 的文件里:

class KnnClassifier(object):
    def __init__(self,labels,samples):
        """ 使用训练数据初始化分类器"""
        self.labels = labels
        self.samples = samples

    def classify(self,point,k=3):
        """ 在训练数据上采用k 近邻分类,并返回标记"""
        # 计算所有训练数据点的距离
        dist = array([L2dist(point,s) for s in self.samples])
        # 对它们进行排序
        ndx = dist.argsort()
        # 用字典存储k 近邻
        votes = {}
        for i in range(k):
            label = self.labels[ndx[i]]
            votes.setdefault(label,0)
            votes[label] += 1

        return max(votes)
    
    def L2dist(p1,p2):
        return sqrt( sum( (p1-p2)**2) )
相关推荐
AI技术控7 小时前
计算机视觉算法实战——表面缺陷检测(主页有源码)
计算机视觉
Erekys8 小时前
视觉分析之边缘检测算法
人工智能·计算机视觉·音视频
唔皇万睡万万睡8 小时前
数字水印嵌入及提取系统——基于小波变换GUI
人工智能·计算机视觉
IT古董8 小时前
【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
深度学习·目标检测·计算机视觉
LensonYuan8 小时前
视觉目标检测之小目标检测技术调研与实验
目标检测·计算机视觉·目标跟踪
高力士等十万人9 小时前
OpenCV中的边缘检测
人工智能·opencv·计算机视觉
三年呀9 小时前
计算机视觉之图像处理-----SIFT、SURF、FAST、ORB 特征提取算法深度解析
图像处理·python·深度学习·算法·目标检测·机器学习·计算机视觉
C#Thread11 小时前
机器视觉--图像的运算(加法)
图像处理·人工智能·计算机视觉
高力士等十万人12 小时前
OpenCV二值化处理
python·opencv·计算机视觉
视觉人机器视觉12 小时前
3D与2D机器视觉机械臂引导的区别
人工智能·数码相机·计算机视觉·3d·视觉检测