C++复习day08

一、C++11

1.列表初始化

在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。比如:

cpp 复制代码
struct Point
{
	int _x;
	int _y;
};
int main()
{
	int array1[] = { 1, 2, 3, 4, 5 };
	int array2[5] = { 0 };
	Point p = { 1, 2 };
	return 0;
}

C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自 定义的类型,使用初始化列表时,可添加等号(=),也可不添加。

cpp 复制代码
struct Point
{
	int _x;
	int _y;
};
int main()
{
	int x1 = 1;
	int x2{ 2 };
	int array1[]{ 1, 2, 3, 4, 5 };
	int array2[5]{ 0 };
	Point p{ 1, 2 };
	// C++11中列表初始化也可以适用于new表达式中
	int* pa = new int[4] { 0 };
	return 0;
}

创建对象时也可以使用列表初始化方式调用构造函数初始化

cpp 复制代码
class Date
{
public:
	Date(int year, int month, int day)
		:_year(year)
		, _month(month)
		, _day(day)
	{
		cout << "Date(int year, int month, int day)" << endl;
	}
private:
	int _year;
	int _month;
	int _day;
};
int main()
{
	Date d1(2022, 1, 1); // old style
	// C++11支持的列表初始化,这里会调用构造函数初始化
	Date d2{ 2022, 1, 2 };
	Date d3 = { 2022, 1, 3 };
	return 0;
}

问:

std::initializer_list是什么类型?

cpp 复制代码
#include <iostream>

using namespace std;

int main()
{
	// the type of il is an initializer_list
	auto il = { 10, 20, 30 };
	cout << typeid(il).name() << endl; //class std::initializer_list<int>
	return 0;
}
mark 复制代码
std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=的参数,这样就可以用大括号赋值
2.变量类型推导

c++11提供了多种简化声明的方式,尤其是在使用模板时

1)auto
	在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局 部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将 其用于实现自动类型推断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初始化值的类型。
cpp 复制代码
int main()
{
	int i = 10;
	auto p = &i;
	auto pf = strcpy;
	cout << typeid(p).name() << endl;
	cout << typeid(pf).name() << endl;
	map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
	//map<string, string>::iterator it = dict.begin();
	auto it = dict.begin();
	return 0;
}
2)decltype

关键字decltype将变量的类型声明为表达式指定的类型。

cpp 复制代码
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
	decltype(t1 * t2) ret;
	cout << typeid(ret).name() << endl;
}
int main()
{
	const int x = 1;
	double y = 2.2;
	decltype(x * y) ret; // ret的类型是double
	decltype(&x) p;      // p的类型是int*
	cout << typeid(ret).name() << endl;
	cout << typeid(p).name() << endl;
	F(1, 'a');
	return 0;
}
3)nullptr

由于C++中NULL被定义成字面量0,这样就可能回带来一些问题,因为0既能指针常量,又能表示 整形常量。所以出于清晰和安全的角度考虑,C++11中新增了nullptr,用于表示空指针。

cpp 复制代码
#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif
3.范围for

范围for遍历

格式:

markdown 复制代码
for(变量:可迭代对象)

举个例子

cpp 复制代码
#include <iostream>
#include <vector>

using namespace std;

int main()
{
	vector<int>v{ 1,2,3,4,5,6,7,8,9,10 };
	for (int& x : v) //这里也可以换成自动推导类型auto
		cout << x << ' ';
	//1 2 3 4 5 6 7 8 9 10
	return 0;
}

范围遍历不能适用于所有情况,范围遍历的条件就是循环迭代的范围必须是可确定的。例如`string`、`array`、`vector`、`list`、`map`等都是可以正常使用的。而用户自定义写的类则需要自行提供**自增运算符重载**和**赋值运算符重载**。

4.右值引用的移动语义

参考之前的

5.lambda匿名函数

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。

cpp 复制代码
#include <algorithm>
#include <functional>
int main()
{
	int array[] = { 4,1,8,5,3,7,0,9,2,6 };
	// 默认按照小于比较,排出来结果是升序
	std::sort(array, array + sizeof(array) / sizeof(array[0]));
	// 如果需要降序,需要改变元素的比较规则
	std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
	return 0;
}

如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

cpp 复制代码
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

struct Goods
{
	string _name;  // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
struct ComparePriceLess
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price < gr._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& gl, const Goods& gr)
	{
		return gl._price > gr._price;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
   3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), ComparePriceLess());
	sort(v.begin(), v.end(), ComparePriceGreater());
}

lambda函数

cpp 复制代码
int main()
{
 vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
3 }, { "菠萝", 1.5, 4 } };
 sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
 return g1._price < g2._price; });
 sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
 return g1._price > g2._price; });
 sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
 return g1._evaluate < g2._evaluate; });
 sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2){
 return g1._evaluate > g2._evaluate; });
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函 数。

**lambda表达式语法 **

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }

  1. lambda表达式各部分说明:

    • [capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来 判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda 函数使用
    • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以 连同()一起省略
    • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量 性。使用该修饰符时,参数列表不可省略(即使参数为空)。
    • ->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回 值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推 导。
    • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获 到的变量。

    注意:

    在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为 空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

    cpp 复制代码
    int main()
    {
        // 最简单的lambda表达式, 该lambda表达式没有任何意义
       []{};
        
        // 省略参数列表和返回值类型,返回值类型由编译器推导为int
        int a = 3, b = 4;
       [=]{return a + 3; };
        
        // 省略了返回值类型,无返回值类型
        auto fun1 = [&](int c){b = a + c; };
        fun1(10)
        cout<<a<<" "<<b<<endl;
        
        // 各部分都很完善的lambda函数
        auto fun2 = [=, &b](int c)->int{return b += a+ c; };
        cout<<fun2(10)<<endl;
        
        // 复制捕捉x
        int x = 10;
        auto add_x = [x](int a) mutable { x *= 2; return a + x; };
        cout << add_x(10) << endl;
        return 0;
    }

    通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调 用,如果想要直接调用,可借助auto将其赋值给一个变量。

  2. 捕获列表说明

    捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

    • [var]:表示值传递方式捕捉变量var
    • [=]:表示值传递方式捕获所有父作用域中的变量(包括this)
    • [&var]:表示引用传递捕捉变量var
    • [&]:表示引用传递捕捉所有父作用域中的变量(包括this)
    • [this]:表示值传递方式捕捉当前的this指针

    注意

    a. 父作用域指包含lambda函数的语句块

    b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。 比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量 [&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量

    c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。 比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

    d. 在块作用域以外的lambda函数捕捉列表必须为空。

    e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者 非局部变量都会导致编译报错。

    f. lambda表达式之间不能相互赋值,即使看起来类型相同

    cpp 复制代码
    void (*PF)();
    int main()
    {
    	auto f1 = [] {cout << "hello world" << endl; };
    	auto f2 = [] {cout << "hello world" << endl; };
    	// 此处先不解释原因,等lambda表达式底层实现原理看完后,大家就清楚了
     //f1 = f2;   // 编译失败--->提示找不到operator=()
    	// 允许使用一个lambda表达式拷贝构造一个新的副本
    	auto f3(f2);
    	f3();
    	// 可以将lambda表达式赋值给相同类型的函数指针
    	PF = f2;
    	PF();
    	return 0;
    }

函数对象与lambda表达式

函数对象,又称为仿函数,即可以想函数一样使用的对象,就是在类中重载了operator()运算符的类对象。

cpp 复制代码
class Rate
{
public:
	Rate(double rate) : _rate(rate)
	{}
	double operator()(double money, int year)
	{
		return money * _rate * year;
	}
private:
	double _rate;
};
int main()
{
	// 函数对象
	double rate = 0.49;
	Rate r1(rate);
	r1(10000, 2);
	// lamber
	auto r2 = [=](double monty, int year)->double {return monty * rate * year;
	};
	r2(10000, 2);
	return 0;
}

从使用方式上来看,函数对象与lambda表达式完全一样。 函数对象将rate作为其成员变量,在定义对象时给出初始值即可,lambda表达式通过捕获列表可 以直接将该变量捕获到。

实际在底层编译器对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的,即:如 果定义了一个lambda表达式,编译器会自动生成一个类,在该类中重载了operator()。

所以在本质上lambda匿名函数就是一个仿函数。

6.function/bind (项目用的比较多,但是考的少)

function包装器

function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。

那么我们来看看,我们为什么需要function呢?

cpp 复制代码
ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!为什么呢?我们继续往下看
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	cout << useF(f, 11.11) << endl;
	// 函数对象
	cout << useF(Functor(), 11.11) << endl;
	// lamber表达式
	cout << useF([](double d)->double { return d / 4; }, 11.11) << endl;
	return 0;
}

通过上面的程序验证,我们会发现useF函数模板实例化了三份。

包装器可以很好的解决上面的问题

cpp 复制代码
std::function在头文件<functional>
// 类模板原型如下
template <class T> function;     // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;
模板参数说明:
Ret : 被调用函数的返回类型
Args...:被调用函数的形参
// 使用方法如下:
#include <functional>
int f(int a, int b)
{
	return a + b;
}
struct Functor
{
public:
	int operator() (int a, int b)
	{
		return a + b;
	}
};
class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};
int main()
{
	// 函数名(函数指针)
	std::function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;
	// 函数对象
	std::function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;
	// lamber表达式
	std::function<int(int, int)> func3 = [](const int a, const int b)
	{return a + b; };
	cout << func3(1, 2) << endl;

	// 类的成员函数
	std::function<int(int, int)> func4 = &Plus::plusi;
	cout << func4(1, 2) << endl;
	std::function<double(Plus, double, double)> func5 = &Plus::plusd;
	cout << func5(Plus(), 1.1, 2.2) << endl;
	return 0;
}

有了包装器,如何解决模板的效率低下,实例化多份的问题呢?

cpp 复制代码
#include <functional>
template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count:" << ++count << endl;
	cout << "count:" << &count << endl;
	return f(x);
}
double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	// 函数名
	std::function<double(double)> func1 = f;
	cout << useF(func1, 11.11) << endl;
	// 函数对象
	std::function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;
	// lamber表达式
	std::function<double(double)> func3 = [](double d)->double { return d /
		4; };
	cout << useF(func3, 11.11) << endl;
	return 0;
}

**bind **

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可 调用对象(callable object),生成一个新的可调用对象来"适应"原对象的参数列表。一般而 言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M 可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺 序调整等操作。

可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对

象来"适应"原对象的参数列表。

调用bind的一般形式:auto newCallable = bind(callable, arg_list);

其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的

callable的参数。当我们调用newCallable时,newCallable会调用callable, 并传给它arg_list中

的参数。

arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是"占位符",表示

newCallable的参数,它们占据了传递给newCallable的参数的"位置"。数值n表示生成的可调用对

象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推

cpp 复制代码
// 使用举例
#include <functional>
int Plus(int a, int b)
{
	return a + b;
}
class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
	std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1,
		placeholders::_2);
	//auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
	//func2的类型为 function<void(int, int, int)> 与func1类型一样
	//表示绑定函数 plus 的第一,二为: 1, 2
	auto  func2 = std::bind(Plus, 1, 2);
	cout << func1(1, 2) << endl;
	cout << func2() << endl;
	Sub s;
	// 绑定成员函数
	std::function<int(int, int)> func3 = std::bind(&Sub::sub, s,
		placeholders::_1, placeholders::_2);
	// 参数调换顺序
	std::function<int(int, int)> func4 = std::bind(&Sub::sub, s,
		placeholders::_2, placeholders::_1);
	cout << func3(1, 2) << endl;
	cout << func4(1, 2) << endl;
	return 0;
}
7.多线程

线程库

在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接 口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在 并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的 线程,必须包含< thread >头文件。

函数名 功能
thread() 构造一个线程对象,没有关联任何线程函数,即没有启动任何线程
thread(fn, args1, args2, ...) 构造一个线程对象,并关联线程函数fn,args1,args2,...为线程函数的 参数
get_id() 获取线程id
jionable() 线程是否还在执行,joinable代表的是一个正在执行中的线程。
jion() 该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行
detach() 在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离 的线程变为后台线程,创建的线程的"死活"就与主线程无关

注意

  1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的 状态。
  2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
cpp 复制代码
#include <thread>
int main()
{
 std::thread t1;
 cout << t1.get_id() << endl;
 return 0;
}

get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中 包含了一个结构体:

cpp 复制代码
// vs下查看
typedef struct
{ /* thread identifier for Win32 */
 void *_Hnd; /* Win32 HANDLE */
 unsigned int _Id;
} _Thrd_imp_t;
  1. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。 线程函数一般情况下可按照以下三种方式提供:
    • 函数指针
    • lambda表达式
    • 函数对象
cpp 复制代码
#include <iostream>
using namespace std;
#include <thread>
void ThreadFunc(int a)
{
    cout << "Thread1" << a << endl;
}
class TF
{
public:
    void operator()()
    {
        cout << "Thread3" << endl;
    }
};
int main()
{
    // 线程函数为函数指针
    thread t1(ThreadFunc, 10);

    // 线程函数为lambda表达式
    thread t2([] {cout << "Thread2" << endl; });

    // 线程函数为函数对象
    TF tf;
    thread t3(tf);

    t1.join();
    t2.join();
    t3.join();
    cout << "Main thread!" << endl;
    return 0;
}
  1. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个 线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。
  2. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
    • 采用无参构造函数构造的线程对象
    • 线程对象的状态已经转移给其他线程对象
    • 线程已经调用jion或者detach结束

面试题:并发与并行的区别?

线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的 ,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。

cpp 复制代码
#include <thread>
#include <iostream>
using namespace std;

void ThreadFunc1(int& x)
{
	x += 10;
}
void ThreadFunc2(int* x)
{
	*x += 10;
}
int main()
{
	int a = 10;
	// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝
	//thread t1(ThreadFunc1, a); //这一行会报错
	//t1.join();
	cout << a << endl;
	// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
	thread t2(ThreadFunc1, std::ref(a));
	t2.join();
	cout << a << endl;
	 // 地址的拷贝
	thread t3(ThreadFunc2, &a);
	t3.join();
	cout << a << endl;
	return 0;
}

注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数。

原子性操作库(atomic)

多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问 题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数 据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:

cpp 复制代码
#include <iostream>
using namespace std;
#include <thread>
unsigned long sum = 0L;

void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;
}
int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 10000000);
	thread t2(fun, 10000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;
}

C++98中传统的解决方式:可以对共享修改的数据可以加锁保护

cpp 复制代码
#include <iostream>
using namespace std;
#include <thread>
#include <mutex>
std::mutex m;
unsigned long sum = 0L;
void fun(size_t num)
{
	m.lock();
	for (size_t i = 0; i < num; ++i)
	{
		sum++;
	}
	m.unlock();
	//或者写成这样
	//for (size_t i = 0; i < num; ++i)
	//{
	//	m.lock();
	//	sum++;
	//	m.unlock();
	//}
}
int main()
{
	cout << "Before joining,sum = " << sum << std::endl;
	thread t1(fun, 10000000);
	thread t2(fun, 10000000);
	t1.join();
	t2.join();
	cout << "After joining,sum = " << sum << std::endl;
	return 0;
}

虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻 塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。

因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入 的原子操作类型,使得线程间数据的同步变得非常高效。

注意:需要使用以上原子操作变量时,必须添加头文件

cpp 复制代码
#include <iostream>
using namespace std;
#include <thread>
#include <atomic>
atomic_long sum{ 0 };
void fun(size_t num)
{
	for (size_t i = 0; i < num; ++i)
		sum++;   // 原子操作
}
int main()
{
	cout << "Before joining, sum = " << sum << std::endl;
	thread t1(fun, 1000000);
	thread t2(fun, 1000000);
	t1.join();
	t2.join();

	cout << "After joining, sum = " << sum << std::endl;
	return 0;
}

在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的 访问。

更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。

cpp 复制代码
atmoic<T> t;    // 声明一个类型为T的原子类型变量t

注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11 中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及 operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算 符重载默认删除掉了(=delete)。

cpp 复制代码
#include <atomic>

int main()
{
	atomic<int> a1(0);
	//atomic<int> a2(a1);   // 编译失败
	atomic<int> a2(0);
	//a2 = a1;               // 编译失败
	return 0;
}

在多线程环境下,如果想要保证某个变量的安全性,只要将其设置成对应的原子类型即可,即高 效又不容易出现死锁问题。但是有些情况下,我们可能需要保证一段代码的安全性,那么就只能 通过锁的方式来进行控制。

比如:一个线程对变量number进行加一100次,另外一个减一100次,每次操作加一或者减一之 后,输出number的结果,要求:number最后的值为1.

上述代码的缺陷:锁控制不好时,可能会造成死锁 ,最常见的比如在锁中间代码返回,或者在锁的范围内抛异常。因此:C++11采用RAII的方式对锁进行了封装,即lock_guard和unique_lock。

在C++11中,Mutex总共包了四个互斥量的种类:

  1. std::mutex

    C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用 的三个函数:

    函数名 功能作用
    lock() 上锁:锁住互斥量
    unlock() 解锁:释放对互斥量的所有权
    try_lock() 尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻 塞

    注意,线程函数调用lock()时,可能会发生以下三种情况:

    • 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前, 该线程一直拥有该锁
    • 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock) 线程函数调用try_lock()时,可能会发生以下三种情况:
    • 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量
    • 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
    • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
  2. std::recursive_mutex

    其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权, 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外, std::recursive_mutex 的特性和 std::mutex 大致相同。

  3. std::timed_mutex

    比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。

    • try_lock_for()
    mark 复制代码
    接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与
    std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回
    false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超
    时(即在指定时间内还是没有获得锁),则返回 false。
    • try_lock_until()
    markdown 复制代码
    接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,
    如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指
    定时间内还是没有获得锁),则返回 false。
  4. std::recursive_timed_mutex

lock_guard

std::lock_gurad 是 C++11 中定义的模板类。定义如下:

cpp 复制代码
template<class _Mutex>
class lock_guard
{
public:
	// 在构造lock_gard时,_Mtx还没有被上锁
	explicit lock_guard(_Mutex& _Mtx)
		: _MyMutex(_Mtx)
	{
		_MyMutex.lock();
	}
	// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
	lock_guard(_Mutex& _Mtx, adopt_lock_t)
		: _MyMutex(_Mtx)
	{}
	~lock_guard() _NOEXCEPT
	{
		_MyMutex.unlock();
	}
	lock_guard(const lock_guard&) = delete;
	lock_guard& operator=(const lock_guard&) = delete;
private:
	_Mutex& _MyMutex;
};

通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封 装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数 成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁 问题。

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了 unique_lock。

unique_lock

与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所 有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动 (move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化 unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解 锁,可以很方便的防止死锁问题。

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:

  • 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
  • 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有 权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
  • 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相 同)、mutex(返回当前unique_lock所管理的互斥量的指针)。

支持两个线程交替打印,一个打印奇数,一个打印偶数(这里会用到条件变量 )

cpp 复制代码
#include <thread>
#include <mutex>
#include <condition_variable>
#include <iostream>

using namespace std;
void two_thread_print()
{
	std::mutex mtx;
	condition_variable c;
	int n = 100;
	bool flag = true;
	thread t1([&]() {
		int i = 0;
		while (i < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return flag; });
			cout << i << endl;
			flag = false;
			i += 2; // 偶数
			c.notify_one();
		}
		});
	thread t2([&]() {
		int j = 1;
		while (j < n)
		{
			unique_lock<mutex> lock(mtx);
			c.wait(lock, [&]()->bool {return !flag; });
			cout << j << endl;
			j += 2; // 奇数
			flag = true;
			c.notify_one();
		}
		});
	t1.join();
	t2.join();
}
int main()
{
	two_thread_print();
	return 0;
}
相关推荐
极客代码1 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
疯一样的码农8 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式
&岁月不待人&30 分钟前
Kotlin by lazy和lateinit的使用及区别
android·开发语言·kotlin
StayInLove33 分钟前
G1垃圾回收器日志详解
java·开发语言
无尽的大道41 分钟前
Java字符串深度解析:String的实现、常量池与性能优化
java·开发语言·性能优化
爱吃生蚝的于勒1 小时前
深入学习指针(5)!!!!!!!!!!!!!!!
c语言·开发语言·数据结构·学习·计算机网络·算法
羊小猪~~1 小时前
数据结构C语言描述2(图文结合)--有头单链表,无头单链表(两种方法),链表反转、有序链表构建、排序等操作,考研可看
c语言·数据结构·c++·考研·算法·链表·visual studio
binishuaio1 小时前
Java 第11天 (git版本控制器基础用法)
java·开发语言·git
zz.YE1 小时前
【Java SE】StringBuffer
java·开发语言
就是有点傻1 小时前
WPF中的依赖属性
开发语言·wpf