pytorch 报错 the graph are freed when you call .backward() or autograd.grad()

原来 的环境 是 python 3.7 torch1.13.1 环境 下面跑通的代码

到 python 3.10 和torch 2.3.1报错

File "/mnt/workspace/t.py", line 200, in train

d_loss.backward()

File "/usr/local/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward

torch.autograd.backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/init.py", line 267, in backward

_engine_run_backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward

return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

解决 d_loss.backward(retain_graph=True)

这个错误信息表明你尝试在一个已经进行了反向传播的计算图中再次进行反向传播,但是计算图的中间变量在第一次反向传播后已经被释放了。在 PyTorch 中,当你调用 `.backward()` 方法时,计算图的中间变量默认是不会被保留的,这意味着你不能在同一张图上再次进行反向传播。

错误信息中提到了两种可能的情况:

  1. 你尝试在同一个计算图中进行了第二次反向传播。

  2. 你尝试在调用 `.backward()` 之后直接访问已经释放的保存的张量。

如果你确实需要在同一个计算图中进行多次反向传播,或者在调用 `.backward()` 之后还需要访问中间变量,你可以在第一次调用 `.backward()` 时添加 `retain_graph=True` 参数。这会告诉 PyTorch 在进行反向传播时保留计算图,以便你可以再次使用它。

修改后的代码示例如下:

```python

d_loss.backward(retain_graph=True)

```

请注意,使用 `retain_graph=True` 可能会增加内存的使用,因为计算图的中间变量不会被立即释放。因此,只有在你确实需要保留计算图时才应该使用这个参数。

另外,如果你在一个循环中多次调用 `.backward()`,确保在每次迭代结束时调用 `optimizer.zero_grad()` 来清除已经累积的梯度,否则梯度会累积起来,导致不正确的更新。

```python

for _ in range(some_iterations):

... 进行前向传播 ...

计算损失

d_loss = ...

反向传播

d_loss.backward(retain_graph=True)

更新模型参数

optimizer.step()

清除梯度

optimizer.zero_grad()

```

如果你不需要保留计算图,确保在每次迭代中都重新构建计算图,而不是重复使用同一个计算图。

相关推荐
百锦再26 分钟前
Jenkins 全面精通指南:从入门到脚本大师
运维·后端·python·servlet·django·flask·jenkins
Dev7z37 分钟前
基于LSTM神经网络的共享单车需求预测系统设计与实现
人工智能·神经网络·lstm
FYKJ_201041 分钟前
springboot大学校园论坛管理系统--附源码42669
java·javascript·spring boot·python·spark·django·php
Open Source Thoughts41 分钟前
OpenClaw.ai:Agentic AI 时代的“SpringFramework”时刻
java·人工智能·spring·prompt·开源软件·agi·ai-native
Loo国昌1 小时前
【AI应用开发实战】 03_LangGraph运行时与状态图编排:从直接执行到图编排的演进之路
人工智能·后端·python·自然语言处理·prompt
njsgcs1 小时前
ollama 报错dial tcp ipv6:443: connectex: A connection attempt failed because 解决办法
人工智能
ValhallaCoder1 小时前
hot100-堆
数据结构·python·算法·
小小小米粒1 小时前
函数式接口 + Lambda = 方法逻辑的 “插拔式解耦”
开发语言·python·算法
眼镜哥(with glasses)2 小时前
0215笔记-语言模型,提问范式与 Token
人工智能·笔记·语言模型
AIMarketing2 小时前
2026年Q1光引GEO 2.0技术原理解析
人工智能