pytorch 报错 the graph are freed when you call .backward() or autograd.grad()

原来 的环境 是 python 3.7 torch1.13.1 环境 下面跑通的代码

到 python 3.10 和torch 2.3.1报错

File "/mnt/workspace/t.py", line 200, in train

d_loss.backward()

File "/usr/local/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward

torch.autograd.backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/init.py", line 267, in backward

_engine_run_backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward

return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

解决 d_loss.backward(retain_graph=True)

这个错误信息表明你尝试在一个已经进行了反向传播的计算图中再次进行反向传播,但是计算图的中间变量在第一次反向传播后已经被释放了。在 PyTorch 中,当你调用 `.backward()` 方法时,计算图的中间变量默认是不会被保留的,这意味着你不能在同一张图上再次进行反向传播。

错误信息中提到了两种可能的情况:

  1. 你尝试在同一个计算图中进行了第二次反向传播。

  2. 你尝试在调用 `.backward()` 之后直接访问已经释放的保存的张量。

如果你确实需要在同一个计算图中进行多次反向传播,或者在调用 `.backward()` 之后还需要访问中间变量,你可以在第一次调用 `.backward()` 时添加 `retain_graph=True` 参数。这会告诉 PyTorch 在进行反向传播时保留计算图,以便你可以再次使用它。

修改后的代码示例如下:

```python

d_loss.backward(retain_graph=True)

```

请注意,使用 `retain_graph=True` 可能会增加内存的使用,因为计算图的中间变量不会被立即释放。因此,只有在你确实需要保留计算图时才应该使用这个参数。

另外,如果你在一个循环中多次调用 `.backward()`,确保在每次迭代结束时调用 `optimizer.zero_grad()` 来清除已经累积的梯度,否则梯度会累积起来,导致不正确的更新。

```python

for _ in range(some_iterations):

... 进行前向传播 ...

计算损失

d_loss = ...

反向传播

d_loss.backward(retain_graph=True)

更新模型参数

optimizer.step()

清除梯度

optimizer.zero_grad()

```

如果你不需要保留计算图,确保在每次迭代中都重新构建计算图,而不是重复使用同一个计算图。

相关推荐
小女孩真可爱7 分钟前
大模型学习记录(八)---------RAG评估
linux·人工智能·python
阿里云大数据AI技术7 分钟前
MaxCompute SQL AI:让 SQL 成为你的 AI 语言
人工智能·sql
www76913 分钟前
从神经科学到软件工程:一个智能体架构的设计反思
人工智能
Feisy15 分钟前
使用深度学习检测元器件是否缺失零件-怎么快速地批量采集深度学习训练用的图片
人工智能·深度学习
刘晓倩15 分钟前
Python3的Sequence
开发语言·python
阿里云大数据AI技术16 分钟前
MaxCompute SQL AI:让SQL成为你的AI语言
人工智能·sql
乾元18 分钟前
AI + Jinja2/Ansible:从自然语义到可执行 Playbook 的完整流水线(工程级深度)
运维·网络·人工智能·网络协议·华为·自动化·ansible
ZhengEnCi20 分钟前
一次多线程同步问题的排查:从 thread_count 到 thread.join() 的踩坑之旅
python·网络协议·tcp/ip
亚里随笔23 分钟前
MiniRL:用LLM稳定强化学习的新范式与第一阶近似理论
人工智能·深度学习·机器学习·llm·rlhf·agentic
Token_w24 分钟前
我的openEuler云原生与AI开发现实际体验
人工智能·云原生