pytorch 报错 the graph are freed when you call .backward() or autograd.grad()

原来 的环境 是 python 3.7 torch1.13.1 环境 下面跑通的代码

到 python 3.10 和torch 2.3.1报错

File "/mnt/workspace/t.py", line 200, in train

d_loss.backward()

File "/usr/local/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward

torch.autograd.backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/init.py", line 267, in backward

_engine_run_backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward

return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

解决 d_loss.backward(retain_graph=True)

这个错误信息表明你尝试在一个已经进行了反向传播的计算图中再次进行反向传播,但是计算图的中间变量在第一次反向传播后已经被释放了。在 PyTorch 中,当你调用 `.backward()` 方法时,计算图的中间变量默认是不会被保留的,这意味着你不能在同一张图上再次进行反向传播。

错误信息中提到了两种可能的情况:

  1. 你尝试在同一个计算图中进行了第二次反向传播。

  2. 你尝试在调用 `.backward()` 之后直接访问已经释放的保存的张量。

如果你确实需要在同一个计算图中进行多次反向传播,或者在调用 `.backward()` 之后还需要访问中间变量,你可以在第一次调用 `.backward()` 时添加 `retain_graph=True` 参数。这会告诉 PyTorch 在进行反向传播时保留计算图,以便你可以再次使用它。

修改后的代码示例如下:

```python

d_loss.backward(retain_graph=True)

```

请注意,使用 `retain_graph=True` 可能会增加内存的使用,因为计算图的中间变量不会被立即释放。因此,只有在你确实需要保留计算图时才应该使用这个参数。

另外,如果你在一个循环中多次调用 `.backward()`,确保在每次迭代结束时调用 `optimizer.zero_grad()` 来清除已经累积的梯度,否则梯度会累积起来,导致不正确的更新。

```python

for _ in range(some_iterations):

... 进行前向传播 ...

计算损失

d_loss = ...

反向传播

d_loss.backward(retain_graph=True)

更新模型参数

optimizer.step()

清除梯度

optimizer.zero_grad()

```

如果你不需要保留计算图,确保在每次迭代中都重新构建计算图,而不是重复使用同一个计算图。

相关推荐
luofeiju3 分钟前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
测试者家园5 分钟前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
张较瘦_9 分钟前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩10 分钟前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
前端付豪17 分钟前
11、打造自己的 CLI 工具:从命令行到桌面效率神器
后端·python
前端付豪17 分钟前
12、用类写出更可控、更易扩展的爬虫框架🕷
后端·python
Baihai_IDP24 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁28 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室44 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF1 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归