pytorch 报错 the graph are freed when you call .backward() or autograd.grad()

原来 的环境 是 python 3.7 torch1.13.1 环境 下面跑通的代码

到 python 3.10 和torch 2.3.1报错

File "/mnt/workspace/t.py", line 200, in train

d_loss.backward()

File "/usr/local/lib/python3.10/site-packages/torch/_tensor.py", line 525, in backward

torch.autograd.backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/init.py", line 267, in backward

_engine_run_backward(

File "/usr/local/lib/python3.10/site-packages/torch/autograd/graph.py", line 744, in _engine_run_backward

return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass

RuntimeError: Trying to backward through the graph a second time (or directly access saved tensors after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved tensors after calling backward.

解决 d_loss.backward(retain_graph=True)

这个错误信息表明你尝试在一个已经进行了反向传播的计算图中再次进行反向传播,但是计算图的中间变量在第一次反向传播后已经被释放了。在 PyTorch 中,当你调用 `.backward()` 方法时,计算图的中间变量默认是不会被保留的,这意味着你不能在同一张图上再次进行反向传播。

错误信息中提到了两种可能的情况:

  1. 你尝试在同一个计算图中进行了第二次反向传播。

  2. 你尝试在调用 `.backward()` 之后直接访问已经释放的保存的张量。

如果你确实需要在同一个计算图中进行多次反向传播,或者在调用 `.backward()` 之后还需要访问中间变量,你可以在第一次调用 `.backward()` 时添加 `retain_graph=True` 参数。这会告诉 PyTorch 在进行反向传播时保留计算图,以便你可以再次使用它。

修改后的代码示例如下:

```python

d_loss.backward(retain_graph=True)

```

请注意,使用 `retain_graph=True` 可能会增加内存的使用,因为计算图的中间变量不会被立即释放。因此,只有在你确实需要保留计算图时才应该使用这个参数。

另外,如果你在一个循环中多次调用 `.backward()`,确保在每次迭代结束时调用 `optimizer.zero_grad()` 来清除已经累积的梯度,否则梯度会累积起来,导致不正确的更新。

```python

for _ in range(some_iterations):

... 进行前向传播 ...

计算损失

d_loss = ...

反向传播

d_loss.backward(retain_graph=True)

更新模型参数

optimizer.step()

清除梯度

optimizer.zero_grad()

```

如果你不需要保留计算图,确保在每次迭代中都重新构建计算图,而不是重复使用同一个计算图。

相关推荐
向量引擎小橙2 分钟前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
AI周红伟4 分钟前
周红伟:数字人智能体构建实操,《数字人智能体部署应用:数字人大模型和智能体+Skills+RAG+Agent+Claude Code的部署应用案例实操》
人工智能
KG_LLM图谱增强大模型15 分钟前
人工智能本体论:大模型辅助构建AI概念层级体系
人工智能
Web3VentureView16 分钟前
X Space AMA回顾|预测熊市底部:当市场寻找价格,SYNBO正在构建未来
人工智能·物联网·金融·web3·区块链
yaoxin52112330 分钟前
324. Java Stream API - 实现 Collector 接口:自定义你的流式收集器
java·windows·python
独行soc36 分钟前
2026年渗透测试面试题总结-24(题目+回答)
网络·python·安全·web安全·渗透测试·安全狮
SmartBrain1 小时前
Python 特性(第一部分):知识点讲解(含示例)
开发语言·人工智能·python·算法
Lun3866buzha1 小时前
基于YOLO11-C3k2-FFCM:跳甲虫害叶片智能检测与识别系统
python
byzh_rc1 小时前
[深度学习网络从入门到入土] 网络中的网络NiN
网络·人工智能·深度学习
AI周红伟1 小时前
周红伟:企业智能体构建实操,《下一代智能体:Claude code+Skills+Gemini+RAG+Agent智能体构建案例实操》
人工智能