第十八章 番外 余弦相似度

余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交(没有相似性),而 -1 表示完全相反的方向。

假设我们有两个向量 A 和 B,它们的余弦相似度可以通过以下公式计算:

$ \text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} $

其中:

  • $ \mathbf{A} \cdot \mathbf{B} $ 是向量 A 和 B 的点积(内积)。
  • $ |\mathbf{A}| 和 和 和 |\mathbf{B}| $ 分别是向量 A 和 B 的模长(长度)。

具体来说:

  • 点积(内积):$ \mathbf{A} \cdot \mathbf{B} = \sum_{i=1}^{n} A_i B_i $,其中 (n) 是向量的维度。
  • 模长(长度):$ |\mathbf{A}| = \sqrt{\sum_{i=1}{n} A_i^2} $。

公式可以进一步展开为:

$ \text{similarity} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}} $

示例计算

假设我们有两个向量 A 和 B,其中:

  • $ \mathbf{A} = [1, 2, 3] $
  • $ \mathbf{B} = [4, 5, 6] $

我们可以按照上述公式计算它们之间的余弦相似度:

  1. 点积
    $ \mathbf{A} \cdot \mathbf{B} = 14 + 25 + 3*6 = 4 + 10 + 18 = 32 $
  2. 模长
    • $ |\mathbf{A}| = \sqrt{12 + 22 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} $
    • $ |\mathbf{B}| = \sqrt{42 + 52 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77} $
  3. 余弦相似度
    $ \text{similarity} = \frac{32}{\sqrt{14} \sqrt{77}} = \frac{32}{\sqrt{1078}} $

我们可以使用 Python 来计算这个值:

python 复制代码
import numpy as np

# 定义两个向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
dot_product = np.dot(vector_a, vector_b)

# 计算模长
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)

# 计算余弦相似度
cosine_similarity = dot_product / (norm_a * norm_b)

print("Cosine similarity:", cosine_similarity)
相关推荐
数据猎手小k11 分钟前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
sp_fyf_202432 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
知来者逆1 小时前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
老艾的AI世界2 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
Chef_Chen3 小时前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
AI街潜水的八角4 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
喵~来学编程啦4 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
Chef_Chen6 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng6 小时前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
-Nemophilist-6 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归