第十八章 番外 余弦相似度

余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交(没有相似性),而 -1 表示完全相反的方向。

假设我们有两个向量 A 和 B,它们的余弦相似度可以通过以下公式计算:

\\text{similarity} = \\cos(\\theta) = \\frac{\\mathbf{A} \\cdot \\mathbf{B}}{\|\\mathbf{A}\| \|\\mathbf{B}\|}

其中:

  • \\mathbf{A} \\cdot \\mathbf{B} 是向量 A 和 B 的点积(内积)。
  • \|\\mathbf{A}\| 和 和 和 \|\\mathbf{B}\| 分别是向量 A 和 B 的模长(长度)。

具体来说:

  • 点积(内积) \\mathbf{A} \\cdot \\mathbf{B} = \\sum_{i=1}\^{n} A_i B_i ,其中 (n) 是向量的维度。
  • 模长(长度) \|\\mathbf{A}\| = \\sqrt{\\sum_{i=1}{n} A_i\^2}

公式可以进一步展开为:

\\text{similarity} = \\frac{\\sum\\limits_{i=1}\^{n} A_i B_i}{\\sqrt{\\sum\\limits_{i=1}\^{n} A_i\^2} \\sqrt{\\sum\\limits_{i=1}\^{n} B_i\^2}}

示例计算

假设我们有两个向量 A 和 B,其中:

  • \\mathbf{A} = \[1, 2, 3\]
  • \\mathbf{B} = \[4, 5, 6\]

我们可以按照上述公式计算它们之间的余弦相似度:

  1. 点积
    \\mathbf{A} \\cdot \\mathbf{B} = 14 + 25 + 3\*6 = 4 + 10 + 18 = 32
  2. 模长
    • \|\\mathbf{A}\| = \\sqrt{12 + 22 + 3\^2} = \\sqrt{1 + 4 + 9} = \\sqrt{14}
    • \|\\mathbf{B}\| = \\sqrt{42 + 52 + 6\^2} = \\sqrt{16 + 25 + 36} = \\sqrt{77}
  3. 余弦相似度
    \\text{similarity} = \\frac{32}{\\sqrt{14} \\sqrt{77}} = \\frac{32}{\\sqrt{1078}}

我们可以使用 Python 来计算这个值:

python 复制代码
import numpy as np

# 定义两个向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
dot_product = np.dot(vector_a, vector_b)

# 计算模长
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)

# 计算余弦相似度
cosine_similarity = dot_product / (norm_a * norm_b)

print("Cosine similarity:", cosine_similarity)
相关推荐
renhongxia110 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
CV@CV11 小时前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
小白|13 小时前
CANN在自动驾驶感知中的应用:构建低延迟、高可靠多传感器融合推理系统
人工智能·机器学习·自动驾驶
ringking12313 小时前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
算法狗213 小时前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
聆风吟º13 小时前
CANN ops-math 应用指南:从零搭建高效、可复用的自定义 AI 计算组件
人工智能·机器学习·cann
小白|14 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
HyperAI超神经15 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
程序员清洒18 小时前
CANN模型剪枝:从敏感度感知到硬件稀疏加速的全链路压缩实战
算法·机器学习·剪枝
液态不合群18 小时前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法