第十八章 番外 余弦相似度

余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交(没有相似性),而 -1 表示完全相反的方向。

假设我们有两个向量 A 和 B,它们的余弦相似度可以通过以下公式计算:

\\text{similarity} = \\cos(\\theta) = \\frac{\\mathbf{A} \\cdot \\mathbf{B}}{\|\\mathbf{A}\| \|\\mathbf{B}\|}

其中:

  • \\mathbf{A} \\cdot \\mathbf{B} 是向量 A 和 B 的点积(内积)。
  • \|\\mathbf{A}\| 和 和 和 \|\\mathbf{B}\| 分别是向量 A 和 B 的模长(长度)。

具体来说:

  • 点积(内积) \\mathbf{A} \\cdot \\mathbf{B} = \\sum_{i=1}\^{n} A_i B_i ,其中 (n) 是向量的维度。
  • 模长(长度) \|\\mathbf{A}\| = \\sqrt{\\sum_{i=1}{n} A_i\^2}

公式可以进一步展开为:

\\text{similarity} = \\frac{\\sum\\limits_{i=1}\^{n} A_i B_i}{\\sqrt{\\sum\\limits_{i=1}\^{n} A_i\^2} \\sqrt{\\sum\\limits_{i=1}\^{n} B_i\^2}}

示例计算

假设我们有两个向量 A 和 B,其中:

  • \\mathbf{A} = \[1, 2, 3\]
  • \\mathbf{B} = \[4, 5, 6\]

我们可以按照上述公式计算它们之间的余弦相似度:

  1. 点积
    \\mathbf{A} \\cdot \\mathbf{B} = 14 + 25 + 3\*6 = 4 + 10 + 18 = 32
  2. 模长
    • \|\\mathbf{A}\| = \\sqrt{12 + 22 + 3\^2} = \\sqrt{1 + 4 + 9} = \\sqrt{14}
    • \|\\mathbf{B}\| = \\sqrt{42 + 52 + 6\^2} = \\sqrt{16 + 25 + 36} = \\sqrt{77}
  3. 余弦相似度
    \\text{similarity} = \\frac{32}{\\sqrt{14} \\sqrt{77}} = \\frac{32}{\\sqrt{1078}}

我们可以使用 Python 来计算这个值:

python 复制代码
import numpy as np

# 定义两个向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
dot_product = np.dot(vector_a, vector_b)

# 计算模长
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)

# 计算余弦相似度
cosine_similarity = dot_product / (norm_a * norm_b)

print("Cosine similarity:", cosine_similarity)
相关推荐
weixin_519535771 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
技术闲聊DD3 小时前
机器学习(1)- 机器学习简介
人工智能·机器学习
程序员大雄学编程5 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
德育处主任7 小时前
地表最强“慧眼”,给大模型戴上智能眼镜 PaddleOCR-VL
人工智能·机器学习·图像识别
i.ajls7 小时前
强化学习入门-1-CartPole-v1(DQN)
机器学习·强化学习·dqn
Victory_orsh8 小时前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习
Ro Jace10 小时前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾10 小时前
Lipschitz连续及其常量
人工智能·机器学习
蜉蝣之翼❉11 小时前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
云青黛12 小时前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习