第十八章 番外 余弦相似度

余弦相似度(Cosine Similarity)是一种衡量两个非零向量之间角度的度量方式,用于评估它们之间的相似性。它的值范围从 -1 到 1,其中 1 表示完全相同的方向(即向量完全相同),0 表示正交(没有相似性),而 -1 表示完全相反的方向。

假设我们有两个向量 A 和 B,它们的余弦相似度可以通过以下公式计算:

\\text{similarity} = \\cos(\\theta) = \\frac{\\mathbf{A} \\cdot \\mathbf{B}}{\|\\mathbf{A}\| \|\\mathbf{B}\|}

其中:

  • \\mathbf{A} \\cdot \\mathbf{B} 是向量 A 和 B 的点积(内积)。
  • \|\\mathbf{A}\| 和 和 和 \|\\mathbf{B}\| 分别是向量 A 和 B 的模长(长度)。

具体来说:

  • 点积(内积) \\mathbf{A} \\cdot \\mathbf{B} = \\sum_{i=1}\^{n} A_i B_i ,其中 (n) 是向量的维度。
  • 模长(长度) \|\\mathbf{A}\| = \\sqrt{\\sum_{i=1}{n} A_i\^2}

公式可以进一步展开为:

\\text{similarity} = \\frac{\\sum\\limits_{i=1}\^{n} A_i B_i}{\\sqrt{\\sum\\limits_{i=1}\^{n} A_i\^2} \\sqrt{\\sum\\limits_{i=1}\^{n} B_i\^2}}

示例计算

假设我们有两个向量 A 和 B,其中:

  • \\mathbf{A} = \[1, 2, 3\]
  • \\mathbf{B} = \[4, 5, 6\]

我们可以按照上述公式计算它们之间的余弦相似度:

  1. 点积
    \\mathbf{A} \\cdot \\mathbf{B} = 14 + 25 + 3\*6 = 4 + 10 + 18 = 32
  2. 模长
    • \|\\mathbf{A}\| = \\sqrt{12 + 22 + 3\^2} = \\sqrt{1 + 4 + 9} = \\sqrt{14}
    • \|\\mathbf{B}\| = \\sqrt{42 + 52 + 6\^2} = \\sqrt{16 + 25 + 36} = \\sqrt{77}
  3. 余弦相似度
    \\text{similarity} = \\frac{32}{\\sqrt{14} \\sqrt{77}} = \\frac{32}{\\sqrt{1078}}

我们可以使用 Python 来计算这个值:

python 复制代码
import numpy as np

# 定义两个向量
vector_a = np.array([1, 2, 3])
vector_b = np.array([4, 5, 6])

# 计算点积
dot_product = np.dot(vector_a, vector_b)

# 计算模长
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)

# 计算余弦相似度
cosine_similarity = dot_product / (norm_a * norm_b)

print("Cosine similarity:", cosine_similarity)
相关推荐
HyperAI超神经8 小时前
IQuest-Coder-V1:基于代码流训练的编程逻辑增强模型;Human Face Emotions:基于多标注维度的人脸情绪识别数据集
人工智能·深度学习·学习·机器学习·ai编程
啊阿狸不会拉杆8 小时前
《机器学习》第 1 章 - 机器学习概述
人工智能·机器学习·ai·ml
咚咚王者9 小时前
人工智能之核心基础 机器学习 第十八章 经典实战项目
人工智能·机器学习
DuHz9 小时前
矩阵束法(Matrix Pencil)用于 FMCW 雷达干扰抑制:论文精读
人工智能·机器学习·矩阵
编程小风筝9 小时前
机器学习和稀疏建模的应用场景和优势
人工智能·机器学习
程序员小嬛9 小时前
(TETCI 2024) 从 U-Net 到 Transformer:即插即用注意力模块解析
人工智能·深度学习·机器学习·transformer
小饼干超人12 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
少林码僧13 小时前
2.30 传统行业预测神器:为什么GBDT系列算法在企业中最受欢迎
开发语言·人工智能·算法·机器学习·ai·数据分析
zm-v-1593043398614 小时前
最新AI-Python自然科学领域机器学习与深度学习技术
人工智能·python·机器学习
郝学胜-神的一滴14 小时前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习