【python因果推断库15】使用 sci-kit learn 模型进行回归断点分析

目录

导入数据

线性模型和主效应模型

线性模型、主效应模型和交互作用模型

使用bandwidth


python 复制代码
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ExpSineSquared, WhiteKernel
from sklearn.linear_model import LinearRegression

import causalpy as cp
%config InlineBackend.figure_format = 'retina'

导入数据

python 复制代码
data = cp.load_data("rd")
data.head()

线性模型和主效应模型

python 复制代码
result = cp.skl_experiments.RegressionDiscontinuity(
    data,
    formula="y ~ 1 + x + treated",
    model=LinearRegression(),
    treatment_threshold=0.5,
)
fig, ax = result.plot()
python 复制代码
result.summary(round_to=3)
复制代码
Difference in Differences experiment
Formula: y ~ 1 + x + treated
Running variable: x
Threshold on running variable: 0.5

Results:
Discontinuity at threshold = 0.19
Model coefficients:
  Intercept      	         0
  treated[T.True]	      0.19
  x              	      1.23

线性模型、主效应模型和交互作用模型

python 复制代码
result = cp.skl_experiments.RegressionDiscontinuity(
    data,
    formula="y ~ 1 + x + treated + x:treated",
    model=LinearRegression(),
    treatment_threshold=0.5,
)
result.plot();

虽然我们可以看到这样做并不能很好地拟合数据,几乎肯定高估了阈值处的不连续性。

python 复制代码
result.summary(round_to=3)
复制代码
Difference in Differences experiment
Formula: y ~ 1 + x + treated + x:treated
Running variable: x
Threshold on running variable: 0.5

Results:
Discontinuity at threshold = 0.92
Model coefficients:
  Intercept        	         0
  treated[T.True]  	      2.47
  x                	      1.32
  x:treated[T.True]	     -3.11

使用bandwidth

我们处理这个问题的一种方法是使用 `bandwidth` 参数。这将只对阈值附近的一定带宽内的数据进行拟合。如果 x 是连续变量,那么模型将只对满足 的数据进行拟合。

python 复制代码
result = cp.skl_experiments.RegressionDiscontinuity(
    data,
    formula="y ~ 1 + x + treated + x:treated",
    model=LinearRegression(),
    treatment_threshold=0.5,
    bandwidth=0.3,
)

result.plot();

我们甚至可以走得更远,只为接近阈值的数据拟合截距。但很明显,这将涉及更多的估计误差,因为我们使用的数据较少。

python 复制代码
result = cp.skl_experiments.RegressionDiscontinuity(
    data,
    formula="y ~ 1 + treated",
    model=LinearRegression(),
    treatment_threshold=0.5,
    bandwidth=0.3,
)

result.plot();
相关推荐
阿坡RPA7 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049937 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心7 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI9 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
JavaEdge在掘金9 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程55510 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
凯子坚持 c10 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
老歌老听老掉牙10 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀101510 小时前
Python入门(7):模块
python
无名之逆10 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust