【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
高洁01几秒前
循环神经网络讲解
人工智能·python·神经网络·机器学习·transformer
Echo_NGC22372 分钟前
【AirSim 教程指南】Part 3:相机与传感器(RGB / 深度 / 分割 / LiDAR)
人工智能·计算机视觉·游戏引擎·ar·无人机·图形渲染·着色器
Sagittarius_A*5 分钟前
深度学习预备知识:数据操作、线性代数与微积分基础
人工智能·深度学习·线性代数·ai
子午8 分钟前
【中草药识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
数据门徒12 分钟前
《人工智能现代方法(第4版)》 第4章 复杂环境中的搜索 学习笔记
人工智能·算法
许泽宇的技术分享13 分钟前
X-AnyLabeling深度解析:让AI标注像呼吸一样自然
人工智能
Hernon13 分钟前
AI智能体 - 人机协同模式
人工智能·ai智能体·ai开发框架·ai智能体设计方法论
新智元14 分钟前
库克告别苹果,「九子夺嫡」争夺 CEO 大战开始了
人工智能·openai
菜鸟‍16 分钟前
【论文学习】SAMed-2: 选择性记忆增强的医学任意分割模型
人工智能·学习·算法
新智元18 分钟前
奥特曼仓促亮剑 GPT-5.2!一张图爆火全网,全面碾压 Gemini 3
人工智能·openai