【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
minhuan7 分钟前
大模型应用:多卡集群跑满14B模型:大模型推理算力应用实践.66
人工智能
golang学习记12 分钟前
VS Code 发布新终端
人工智能
无忧智库30 分钟前
未来已来:深度解析城市空中交通(UAM)垂直起降场(Vertiport)智能化配套设施建设方案(WORD)
人工智能
叫我:松哥31 分钟前
基于python强化学习的自主迷宫求解,集成迷宫生成、智能体训练、模型评估等
开发语言·人工智能·python·机器学习·pygame
2501_9449347334 分钟前
大专学历行政转型管理的必要性分析
人工智能
安全二次方security²41 分钟前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
汗流浃背了吧,老弟!44 分钟前
构建RAG系统时,如何选择合适的嵌入模型(Embedding Model)?
人工智能·python·embedding
老蒋每日coding1 小时前
从存证到智能:当碳链架构注入AI灵魂——区块链+AI融合新范式
人工智能·区块链
DN20201 小时前
靠谱的AI销售机器人哪家好
java·人工智能·机器人
菜鸟‍1 小时前
【论文学习】重新审视面向持续图像分割的基于查询的 Transformer || 用于二分类图像分割的多视图聚合网络
人工智能·学习·计算机视觉