【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
建投数据几秒前
建投数据再度获评国家级“高新技术企业”
大数据·人工智能
中电金信4 分钟前
中电金信助力200+金融机构同步迁移SWIFT ISO20022标准
大数据·人工智能
山土成旧客4 分钟前
【Python学习打卡-Day25】从程序崩溃到优雅处理:掌握Python的异常处理艺术
人工智能·python·学习
_codemonster7 分钟前
AI大模型入门到实战系列(十四)创建文本嵌入模型
人工智能
程序猿202314 分钟前
大语言模型简介
人工智能·语言模型·自然语言处理
CodeLinghu19 分钟前
提示词链模式:一种利用LLM大语言模型处理复杂任务的强大范式
前端·人工智能·语言模型
Wilber的技术分享22 分钟前
【大模型实战笔记 8】深入理解 LangGraph:构建可持久化、多智能体的 LLM 工作流
人工智能·笔记·agent·langgraph·智能体开发
小二·25 分钟前
AI工程化实战《二》:RAG 高级优化全解——从 HyDE 到 Self-RAG,打造高精度企业问答系统
人工智能·microsoft·机器学习
yuhaiqun198928 分钟前
学AI Agent:从React模式到Plan框架,3条路径一次学透
人工智能·经验分享·笔记·react.js·机器学习·ai·aigc
zhonghua88101637 分钟前
spring ai alibab agent之ReactAgent深度解读
java·人工智能·spring