【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
光的方向_7 分钟前
ChatGPT提示工程入门 Prompt 03-迭代式提示词开发
人工智能·chatgpt·prompt·aigc
盼小辉丶13 分钟前
PyTorch实战(29)——使用TorchServe部署PyTorch模型
人工智能·pytorch·深度学习·模型部署
郝学胜-神的一滴14 分钟前
在Vibe Coding时代,学习设计模式与软件架构
人工智能·学习·设计模式·架构·软件工程
AI英德西牛仔16 分钟前
AI输出无乱码
人工智能
艾醒(AiXing-w)17 分钟前
技术速递——通义千问 3.5 深度横评:纸面超越 GPT‑5.2,实测差距在哪?
人工智能·python·语言模型
xiangzhihong818 分钟前
Gemini 3.1 Pro血洗Claude与GPT,12项基准测试第一!
人工智能
爱跑步的程序员~25 分钟前
Spring AI会话记忆使用与底层实现
人工智能·spring
ppppppatrick26 分钟前
【深度学习基础篇】线性回归代码解析
人工智能·深度学习·线性回归
肾透侧视攻城狮27 分钟前
《工业级实战:TensorFlow房价预测模型开发、优化与问题排查指南》
人工智能·深度学习·tensorfl波士顿房价预测·调整网络结构·使用k折交叉验证·添加正则化防止过拟合·tensorflow之回归问题
王解38 分钟前
第四篇:万能接口 —— 插件系统设计与实现
人工智能·nanobot