【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
喜欢吃豆3 小时前
深度解析DeepSeek大语言模型架构演进——从多头注意力机制到 DeepSeek 核心技术体系 (DeepSeek-MoE, MTP, MLA)
人工智能·语言模型·架构·大模型·deepseek
Elwin Wong3 小时前
关于熵的一些概念及其计算
人工智能·大模型·llm
qzhqbb3 小时前
问题归约知识表示及其搜索技术
人工智能·剪枝
杰瑞不懂代码3 小时前
OFDM 系统端到端仿真详解:信道估计、均衡与性能评估
人工智能·深度学习·matlab·ofdm
Wang201220133 小时前
AI各个领域适用的大模型介绍和适配的算法
人工智能·算法
冰西瓜6003 小时前
隐马尔可夫模型的三大问题(HMM)
人工智能·机器学习
工藤学编程3 小时前
AI Ping 赋能:基于 GLM-4.7(免费!)+ LangChain + Redis 打造智能AI聊天助手
人工智能·redis·langchain
程序员哈基耄4 小时前
AI背景移除器:一键释放图像创造力
人工智能
fie88894 小时前
基于 Matlab 实现的 语音分帧、端点检测、音高提取与DTW算法 结合的歌曲识别系统
人工智能·matlab
fruge4 小时前
解锁AI开发新效率:AI Ping平台与免费明星模型MiniMax-M2.1、GLM-4.7深度解析
人工智能