【mechine learning-九-梯度下降】

梯度下降

上一节讲过,随机的寻找w和b使损失最小不是一种合适的方法,梯度下降算法就是解决解决这个问题的,它不仅可以用于线性回归,还可以用于神经网络等深度学习算法,是目前的通用性算法。

更加通用的梯度下降算法

之前二维关于w和b的损失函数(无特殊说明,均以均方误差成本函数为例)如下:,

但是在更多的例子里,或者说更加复杂的神经网络里面,w是很多个,目前很多模型都是超过几千亿参数:

已经无法使用随机法来解决最小化J这个损失,必须用更加通用的梯度下降算法来解决最小化损失的问题。

算法步骤

假设某一个模型的成本函数也就是Loss fuction如上(不是线性回归也不是均方误差):

如何从这里面找到J的最小值呢?方法如下:

  1. 设定w和b初始值。如图中左边这条线的起点。
  2. 从现在的位置旋转360度,找到J下降最快的点,向下走一步。(这意味着你走的是最快下山的路)
  3. 以下降后的位置,重复上述步骤,直到发现走到了一个局部最小的山谷底,也就是J的具备最小值。

梯度下降有意思的一件事情,假设随机选择的起始点是另外一个位置,比如右面这条线的起始点,那么找到的就是右边这个局部的最低点,这两个是完全不同的最低点。至于具体怎么实现算法留在下一节。

相关推荐
AI即插即用4 分钟前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月4 分钟前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖13 分钟前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
冰菓Neko14 分钟前
科目四刷题总结
人工智能
guizhoumen16 分钟前
2026年建站系统推荐及选项指南
大数据·运维·人工智能
咚咚王者22 分钟前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
蘑菇物联24 分钟前
蘑菇物联入选“预见·2026”年度双榜,以AI技术赋能制造业绿色转型!
大数据·人工智能
无忧智库28 分钟前
智慧城市核心标准全景解析:从顶层设计到落地实践的深度解读(PPT)
人工智能·智慧城市
2501_9421917740 分钟前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
m0_466525291 小时前
东软与葫芦岛市民政局签约 共建智慧养老服务平台
大数据·人工智能