[机器学习]决策树

1 决策树简介

2 信息熵

3 ID3决策树

3.1 决策树构建流程

3.2 决策树案例

4 C4.5决策树

5 CART决策树(分类&回归)

6 泰坦尼克号生存预测案例

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,plot_tree
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,classification_report
# 获取数据
data=pd.read_csv('titanic/train.csv')
# data.info()
# 数据处理
x=data[['Sex','Age','Pclass']]
y=data['Survived']
# x.head()
# 热编码
x=pd.get_dummies(x)
# 缺失值填充
x['Age']=x['Age'].fillna(x['Age'].mean())
# x.head()
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=22)
# 模型训练
tree=DecisionTreeClassifier(criterion='gini',max_depth=6)
tree.fit(x_train,y_train)
# 模型预测
y_predict=tree.predict(x_test)
# print(y_predict)
# 模型评估
print('accuracy_score',accuracy_score(y_test,y_predict))
print('precision_score',precision_score(y_test,y_predict))
print('recall_score',recall_score(y_test,y_predict))
print('f1_score',f1_score(y_test,y_predict))
print(classification_report(y_test,y_predict))
# 绘制树
plt.figure(figsize=(30,20))
plot_tree(tree,filled=True,feature_names=['Age','Pclass','Sex_female','Sex_male'],class_names=['died','survived'])
plt.show()

7 CART回归树

python 复制代码
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor,plot_tree
import matplotlib.pyplot as plt

# 构建数据
x=np.array(list(range(1,11))).reshape(-1,1)
print(x.shape)
y=np.array([5.56,5.7,5.91,6.4,6.8,7.05,8.9,8.7,9,9.05])
# print(x)

# 模型训练
model1=LinearRegression()
model2=DecisionTreeRegressor(max_depth=1)
model3=DecisionTreeRegressor(max_depth=3)

model1.fit(x,y)
model2.fit(x,y)
model3.fit(x,y)
# 模型预测
x_test=np.arange(0.0,10.0,0.01).reshape(-1,1)
print(x_test.shape)
y1=model1.predict(x_test)
y2=model2.predict(x_test)
y3=model3.predict(x_test)

plt.scatter(x,y)
plt.plot(x_test,y1)
plt.plot(x_test,y2)
plt.plot(x_test,y3)
plt.grid()
plt.show()

plt.figure(figsize=(30,20))
plot_tree(model3,filled=True)
plt.show()

8 决策树剪枝

相关推荐
明月照山海-8 分钟前
机器学习周报二十六
人工智能·机器学习·计算机视觉
乱世刀疤13 分钟前
Dify修改默认80端口的方法
人工智能·dify
杨小扩15 分钟前
提升开发效率的在线工具箱实践:集成AI能力的多功能工具平台体验
人工智能
Master_oid20 分钟前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
永恒-龙啸26 分钟前
图像增强与滤波
图像处理·人工智能·计算机视觉
嗷嗷哦润橘_41 分钟前
AI Agent学习:MetaGPT项目之RAG
人工智能·python·学习·算法·deepseek
Buxxxxxx1 小时前
DAY 39 GPU训练及类的call方法
人工智能
我有医保我先冲1 小时前
企业级会议管理工具选型指南:从需求分析到方案落地
人工智能·经验分享·自然语言处理·需求分析
良策金宝AI1 小时前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
陈天伟教授1 小时前
人工智能应用-机器视觉:车牌识别(2)
人工智能·神经网络·机器学习