代码随想录算法训练营第三十二天 | 509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯

第三十二天打卡,动态规范第一天!今天比较简单,主要理解dp的概念


509.斐波那契数列

题目链接

解题过程

  • 状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

动态规划

cpp 复制代码
class Solution {
public:
    int fib(int n) {
        if (n < 2) return n;
        int dp[n + 1];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

70.爬楼梯

题目链接

解题过程

  • 第三层楼梯的状态可以由第二层楼梯和到第一层楼梯状态推导出来,即爬到第三层楼的方法数等于爬到第二层楼的方法数与爬到第一层楼的方法数之和

动态规划

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        vector<int>dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp.back();
    }
};

746.使用最小花费爬楼梯

题目链接

解题过程

  • dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

  • dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

动态规划

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int len = cost.size();
        vector<int>dp(len + 1);
        dp[0] = 0;
        dp[1] = 0;
        for (int i = 2; i <= len; i++) {
            dp[i] = min(cost[i - 2] + dp[i - 2], cost[i - 1] + dp[i - 1]);
        }
        return dp.back();
    }
};
相关推荐
云卓SKYDROID3 分钟前
除草机器人算法以及技术详解!
算法·机器人·科普·高科技·云卓科技·算法技术
半盏茶香27 分钟前
【C语言】分支和循环详解(下)猜数字游戏
c语言·开发语言·c++·算法·游戏
徐子童31 分钟前
双指针算法习题解答
算法
想要打 Acm 的小周同学呀40 分钟前
LRU缓存算法
java·算法·缓存
劲夫学编程2 小时前
leetcode:杨辉三角
算法·leetcode·职场和发展
毕竟秋山澪2 小时前
孤岛的总面积(Dfs C#
算法·深度优先
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
励志成为嵌入式工程师6 小时前
c语言简单编程练习9
c语言·开发语言·算法·vim
捕鲸叉6 小时前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer6 小时前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法