图数据库的力量:深入理解与应用 Neo4j

图数据库的力量:深入理解与应用 Neo4j

文章目录

1、什么是 Neo4j?

Neo4j 是由 Java 实现的开源 NoSQL 图数据库。自 2003 年开始开发,2007 年正式发布第一版并将源码托管于 GitHub。作为图数据库的代表产品,Neo4j 已经在众多行业项目中广泛应用,如网络管理、软件分析、组织和项目管理及社交网络等。

Neo4j 官网: https://neo4j.com/

Neo4j 提供了专业数据库级别的图数据模型存储,具备完整的数据库特性,包括 ACID 事务支持、集群支持、备份和故障转移等功能。

它还支持声明式查询语言 Cypher,这种语言类似于关系型数据库中的 SQL,操作简单,表现力强,查询效率高,且具有良好的扩展性。

下图演示了 Neo4j 的典型数据存储方式:

在上图中,紫色圆圈代表【人】数据,橙色圆圈代表【电影】数据,展示了人和电影之间参演或导演的关系。

版本说明

Neo4j 提供以下两个版本:

  • 社区版(Community Edition):具备了基本功能,适合开发环境使用。
  • 企业版(Enterprise Edition):相对于社区版增加了集群部署、高级监控、高级缓存、在线备份等功能,建议在生产环境中使用。

企业版从 3.2 版本开始支持集群,能够在不受地理位置限制的情况下实现事务 ACID 特性。更多信息请参考:Neo4j 企业版特性

2、Neo4j 的部署和安装

Neo4j 支持多个平台的部署和安装,包括 Windows、Mac 和 Linux 等系统。在安装 Neo4j 之前,请确保已安装 Java 虚拟机。

使用 Docker 进行安装的命令如下:

shell 复制代码
docker run \
-d \
--restart=always \
--name neo4j \
-p 7474:7474 \
-p 7687:7687 \
-v neo4j:/data \
neo4j:4.4.5

# 7474 是 web 管理工具的端口,7687 是 Neo4j 协议端口用于数据通信
Neo4j Web 工具介绍

Neo4j 提供了一个便捷的 Web 工具,可以进行数据库的 CRUD 操作。

3、体验 Neo4j

以下是通过官方提供的电影数据来实战体验 Neo4j 的步骤:

加载数据

首先,选择并加载数据:

系统会自动将创建数据的 Cypher 语句加载到输入框中,点击执行:

执行成功后,可以看到数据已经成功导入:

查询数据

例如,查询【Tom Hanks】参演了哪些电影的 Cypher 语句如下:

cypher 复制代码
MATCH (tom:Person {name: "Tom Hanks"})-[:ACTED_IN]->(tomHanksMovies) RETURN tom, tomHanksMovies

查询结果如下图所示:

数据结构

在 Neo4j 中,数据通过节点、属性、关系和标签来存储。以下是具体说明:

  • 节点:存储实体数据(如上图中的演员和电影),类似于关系型数据库中的表。
  • 关系:存储节点之间的关系。每个关系只能有一个类型,必须有开始和结束节点,并且可以循环引用,但不能留空。
  • 属性:节点和关系都可以有属性,由键值对组成。节点的属性类似于关系型数据库中的字段,而关系属性则进一步明确了关系属性。
  • 标签:用于对节点进行分类,使 Neo4j 数据模型更易于构建。在上面的电影案例中,Movie 和 Person 即是标签。

4、Cypher 入门

Cypher 是 Neo4j 的查询语言,类似于关系型数据库中的 SQL,一些关键词来源于 SQL,比如:CREATE、WHERE、RETURN 等。下面我们一起学习 Cypher 的基本语句。

Cypher 语句的关键字对大小写不敏感。

创建数据
cypher 复制代码
// 查询所有数据
MATCH (n) RETURN n

// 删除所有节点和关系,慎用!
MATCH (n) DETACH DELETE n

// 创建一个具有 name 属性的节点,变量 n 代表该节点,创建完成后返回该节点
CREATE (n {name: $value}) RETURN n

// 创建一个指定标签($Tag)的节点
CREATE (n:$Tag {name: $value})

// 创建 n 指向 m 的关系,并且指定关系类型为 KNOWS
CREATE (n)-[r:KNOWS]->(m)

// 示例
// 创建节点,并赋予 name 属性
CREATE (n {name:'迪士尼营业部'})
CREATE (n:AGENCY {name:'航头营业部'})

// 创建浦东新区转运中心、上海转运中心节点,并且创建关系类型为 IN_LINE,创建完成后返回节点和关系
// TLT -> Two Level Transport(二级转运中心)
// OLT -> One Level Transport(一级转运中心)
CREATE (n:TLT {name:'浦东新区转运中心'}) -[r:IN_LINE]-> (m:OLT {name:'上海转运中心'}) RETURN n,r,m

// 关系可以是反向的,并且可以为关系指定属性
CREATE (n:TLT {name:'浦东新区转运中心'}) <-[r:OUT_LINE]- (m:OLT {name:'上海转运中心'}) RETURN n,r,m

在上面的示例中,我们先后创建了节点、指定标签的节点以及带有特定关系类型的节点。示例代码展示了如何创建双向关系,并且为关系指定属性。

查询数据
cypher 复制代码
// 匹配某个条件的节点
MATCH (n:AGENCY {name: "航头营业部"}) RETURN n

// 查询具有一定条件的节点及其关系,并按照一定顺序返回数据
MATCH (n)-[:KNOWS]->(m) WHERE m.name = "Tom Hanks" RETURN n, m ORDER BY n.name ASC
关系深度查询

可以指定关系的深度进行查询,语法格式:-[:TYPE*minHops..maxHops]->

例如,六度分隔(Six Degrees of Separation)理论表明,你和任何一个陌生人之间所间隔的中间人不会超过六个,也就是说,最多通过六个人你就能认识任何一个陌生人。

cypher 复制代码
// 查询【北京市转运中心】关系中深度为 1~2 层的节点
MATCH (n:OLT {name:"北京市转运中心"}) -[*1..2]->(m) RETURN *

// 可以简写为
MATCH (n:OLT {name:"北京市转运中心"}) -[*..2]->(m) RETURN *

// 通过变量查询
MATCH path = (n:OLT {name:"北京市转运中心"}) -[*..2]->(m) RETURN path

// 获取结果中的关系,WITH 语句将结果传递给下一个查询
MATCH path = (n:OLT {name:"北京市转运中心"}) -[*..2]->(m)
WITH n, m, relationships(path) AS r
RETURN r

// 查询两个网点之间所有的路径,最大深度为 6
MATCH path = (n:AGENCY) -[*..6]->(m:AGENCY)
WHERE n.name = "北京市昌平区定泗路" AND m.name = "上海市浦东新区南汇"
RETURN path

// 查询两个网点之间的最短路径,查询深度最大为 10
MATCH path = shortestPath((n:AGENCY) -[*..10]->(m:AGENCY))
WHERE n.name = "北京市昌平区定泗路" AND m.name = "上海市浦东新区南汇"
RETURN path

// 查询两个网点之间所有路径中成本最低的一条路径,最大深度为 10
MATCH path = (n:AGENCY) -[*..10]->(m:AGENCY)
WHERE n.name = "北京市昌平区定泗路" AND m.name = "上海市浦东新区南汇"
UNWIND relationships(path) AS r
WITH sum(r.cost) AS cost, path
RETURN path ORDER BY cost ASC, LENGTH(path) ASC LIMIT 1

// UNWIND 将列表数据展开
// sum() 是聚合函数,类似的还有 avg()、max()、min() 等
分页查询
cypher 复制代码
// 分页查询网点,按照 bid 正序排序,每页查询 2 条数据

// 第一页
MATCH (n:AGENCY) 
RETURN n ORDER BY n.bid ASC SKIP 0 LIMIT 2

// 第二页
MATCH (n:AGENCY)
RETURN n ORDER BY n.bid ASC SKIP 2 LIMIT 2
更新数据

更新数据使用 SET 语句进行标签、属性的更新。SET 操作是幂等性的。

cypher 复制代码
// 更新或设置属性
MATCH (n:AGENCY {name:"北京市昌平区新龙城"})
SET n.address = "龙跃苑四区3号楼底商101号"
RETURN n

// 移除属性
MATCH (n:AGENCY {name:"北京市昌平区新龙城"}) 
REMOVE n.address 
RETURN n

// 给没有 address 属性的节点增加 address 属性
MATCH (n:AGENCY) 
WHERE n.address IS NULL 
SET n.address = "暂无地址" 
RETURN n
删除数据

删除数据通过 DELETE 和 DETACH DELETE 完成。DELETE 不能删除有关系的节点,删除关系需要使用 DETACH DELETE。

cypher 复制代码
// 删除节点
MATCH (n:AGENCY {name:"航头营业部"})
DELETE n

// 有关系的节点不能直接删除
MATCH (n:AGENCY {name:"北京市昌平区新龙城"})
DELETE n

// 删除节点及其所有关系
MATCH (n:AGENCY {name:"北京市昌平区新龙城"})
DETACH DELETE n

// 删除所有节点和关系,慎用!
MATCH (n)
DETACH DELETE n
索引

给节点添加索引以提高查询效率。

cypher 复制代码
// 创建索引语法
CREATE [TEXT] INDEX [index_name] [IF NOT EXISTS]
FOR (n:LabelName)
ON (n.propertyName)
[OPTIONS "{" option: value[, ...] "}"]

// 示例
CREATE TEXT INDEX agency_index_bid IF NOT EXISTS FOR (n:AGENCY) ON (n.bid)

// 删除索引语法
DROP INDEX [index_name]

// 示例
DROP INDEX agency_index_bid

通过对 Neo4j 的深入理解与应用,图数据模型的强大优势得以展现。无论是复杂关系存储还是高效查询,Neo4j 都表现出色。希望这些详细的示例和说明能帮助你更好地掌握 Neo4j,为实际项目应用打下坚实基础。

相关推荐
爱可生开源社区4 分钟前
SQLShift 重磅更新:支持 SQL Server 存储过程转换至 GaussDB!
数据库
贾修行26 分钟前
SQL Server 空间函数从入门到精通:原理、实战与多数据库性能对比
数据库·sqlserver
傲祥Ax39 分钟前
Redis总结
数据库·redis·redis重点总结
一屉大大大花卷1 小时前
初识Neo4j之入门介绍(一)
数据库·neo4j
周胡杰2 小时前
鸿蒙arkts使用关系型数据库,使用DB Browser for SQLite连接和查看数据库数据?使用TaskPool进行频繁数据库操作
前端·数据库·华为·harmonyos·鸿蒙·鸿蒙系统
wkj0012 小时前
navicate如何设置数据库引擎
数据库·mysql
赵渝强老师2 小时前
【赵渝强老师】Oracle RMAN的目录数据库
数据库·oracle
暖暖木头2 小时前
Oracle注释详解
数据库·oracle
御控工业物联网2 小时前
御控网关如何实现MQTT、MODBUS、OPCUA、SQL、HTTP之间协议转换
数据库·sql·http
GJCTYU4 小时前
spring中@Transactional注解和事务的实战理解附代码
数据库·spring boot·后端·spring·oracle·mybatis