[数据集][目标检测]疟疾恶性疟原虫物种目标检测数据集VOC+YOLO格式948张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):948

标注数量(xml文件个数):948

标注数量(txt文件个数):948

标注类别数:1

标注类别名称:["plasmodium"]

每个类别标注的框数:

plasmodium 框数 = 7628

总框数:7628

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:网上看到同类数据集他们标注都存在问题。这个数据集专门经过写代码修复

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

标注示例:

别人标注文件:

上面明显存在几个错误,labelImg标注xmin,ymin等坐标信息都是整数,而且labelImg标准类别是<name></name>表示,显然无法正常读取,此外标注信息没有图片宽高等关键信息,容易导致后续脚本编写难度增大,经过修复后变成如下:

复制代码
<annotation>
        <folder>VOC</folder>
        <filename>firc_plasmodium_1181.jpg</filename>
        <path>C:/Users/Administrator/Desktop/data/JPEGImages/firc_plasmodium_1181.jpg</path>
        <source>
            <database>My Database</database>
            <annotation>VOC2012</annotation>
            <image>flickr</image>
            <flickrid>NULL</flickrid>
        </source>
        <owner>
            <flickrid>NULL</flickrid>
            <name>company</name>
        </owner>
        <size>
            <width>750</width>
            <height>750</height>
            <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>253</xmin>
                <ymin>83</ymin>
                <xmax>293</xmax>
                <ymax>123</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>242</xmin>
                <ymin>117</ymin>
                <xmax>282</xmax>
                <ymax>157</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>498</xmin>
                <ymin>0</ymin>
                <xmax>538</xmax>
                <ymax>40</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>566</xmin>
                <ymin>7</ymin>
                <xmax>606</xmax>
                <ymax>47</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>299</xmin>
                <ymin>275</ymin>
                <xmax>339</xmax>
                <ymax>315</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>382</xmin>
                <ymin>332</ymin>
                <xmax>422</xmax>
                <ymax>372</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>396</xmin>
                <ymin>577</ymin>
                <xmax>436</xmax>
                <ymax>617</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>580</xmin>
                <ymin>572</ymin>
                <xmax>620</xmax>
                <ymax>612</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>676</xmin>
                <ymin>102</ymin>
                <xmax>716</xmax>
                <ymax>142</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>439</xmin>
                <ymin>159</ymin>
                <xmax>479</xmax>
                <ymax>199</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>540</xmin>
                <ymin>177</ymin>
                <xmax>580</xmax>
                <ymax>217</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>513</xmin>
                <ymin>221</ymin>
                <xmax>553</xmax>
                <ymax>261</ymax>
            </bndbox>
        </object>
</annotation>

上面格式为标准VOC格式符合行业标准规范,而且使用网上其他脚本不容易出错。

下载地址: https://download.csdn.net/download/FL1623863129/89755231

相关推荐
工程师老罗6 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
学习3人组9 小时前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior9 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖11 小时前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
禁默13 小时前
从图像预处理到目标检测:Ops-CV 助力 CV 任务在昇腾 NPU 上高效运行
人工智能·目标检测·目标跟踪·cann
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
2501_941329721 天前
改进YOLOv8-seg-act__鸡只计数检测实战
yolo
程序猿追1 天前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
weixin_395448911 天前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
Token_w1 天前
CANN ops-cv解读——AIGC图像生成/目标检测的图像处理算子库
图像处理·目标检测·aigc