[数据集][目标检测]疟疾恶性疟原虫物种目标检测数据集VOC+YOLO格式948张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):948

标注数量(xml文件个数):948

标注数量(txt文件个数):948

标注类别数:1

标注类别名称:["plasmodium"]

每个类别标注的框数:

plasmodium 框数 = 7628

总框数:7628

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:网上看到同类数据集他们标注都存在问题。这个数据集专门经过写代码修复

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

标注示例:

别人标注文件:

上面明显存在几个错误,labelImg标注xmin,ymin等坐标信息都是整数,而且labelImg标准类别是<name></name>表示,显然无法正常读取,此外标注信息没有图片宽高等关键信息,容易导致后续脚本编写难度增大,经过修复后变成如下:

复制代码
<annotation>
        <folder>VOC</folder>
        <filename>firc_plasmodium_1181.jpg</filename>
        <path>C:/Users/Administrator/Desktop/data/JPEGImages/firc_plasmodium_1181.jpg</path>
        <source>
            <database>My Database</database>
            <annotation>VOC2012</annotation>
            <image>flickr</image>
            <flickrid>NULL</flickrid>
        </source>
        <owner>
            <flickrid>NULL</flickrid>
            <name>company</name>
        </owner>
        <size>
            <width>750</width>
            <height>750</height>
            <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>253</xmin>
                <ymin>83</ymin>
                <xmax>293</xmax>
                <ymax>123</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>242</xmin>
                <ymin>117</ymin>
                <xmax>282</xmax>
                <ymax>157</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>498</xmin>
                <ymin>0</ymin>
                <xmax>538</xmax>
                <ymax>40</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>566</xmin>
                <ymin>7</ymin>
                <xmax>606</xmax>
                <ymax>47</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>299</xmin>
                <ymin>275</ymin>
                <xmax>339</xmax>
                <ymax>315</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>382</xmin>
                <ymin>332</ymin>
                <xmax>422</xmax>
                <ymax>372</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>396</xmin>
                <ymin>577</ymin>
                <xmax>436</xmax>
                <ymax>617</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>580</xmin>
                <ymin>572</ymin>
                <xmax>620</xmax>
                <ymax>612</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>676</xmin>
                <ymin>102</ymin>
                <xmax>716</xmax>
                <ymax>142</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>439</xmin>
                <ymin>159</ymin>
                <xmax>479</xmax>
                <ymax>199</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>540</xmin>
                <ymin>177</ymin>
                <xmax>580</xmax>
                <ymax>217</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>513</xmin>
                <ymin>221</ymin>
                <xmax>553</xmax>
                <ymax>261</ymax>
            </bndbox>
        </object>
</annotation>

上面格式为标准VOC格式符合行业标准规范,而且使用网上其他脚本不容易出错。

下载地址: https://download.csdn.net/download/FL1623863129/89755231

相关推荐
极智视界2 小时前
分类场景数据集大全「包含数据标注+训练脚本」 (持续原地更新)
人工智能·yolo·数据集·分类算法·数据标注·classification·分类数据集
Blossom.11813 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
叶子20242217 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
Blossom.11821 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
一勺汤1 天前
YOLO12 改进|融入 Mamba 架构:插入视觉状态空间模块 VSS Block 的硬核升级
yolo·计算机视觉·mamba·yolov12·yolo12·yolo12该机·yolo12 mamba
蹦蹦跳跳真可爱5892 天前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
Hero_HL2 天前
Towards Open World Object Detection概述(论文)
人工智能·目标检测·计算机视觉
audyxiao0012 天前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
中达瑞和-高光谱·多光谱2 天前
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
数码相机·目标检测·无人机
蹦蹦跳跳真可爱5892 天前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测