[数据集][目标检测]疟疾恶性疟原虫物种目标检测数据集VOC+YOLO格式948张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):948

标注数量(xml文件个数):948

标注数量(txt文件个数):948

标注类别数:1

标注类别名称:["plasmodium"]

每个类别标注的框数:

plasmodium 框数 = 7628

总框数:7628

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:网上看到同类数据集他们标注都存在问题。这个数据集专门经过写代码修复

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

标注示例:

别人标注文件:

上面明显存在几个错误,labelImg标注xmin,ymin等坐标信息都是整数,而且labelImg标准类别是<name></name>表示,显然无法正常读取,此外标注信息没有图片宽高等关键信息,容易导致后续脚本编写难度增大,经过修复后变成如下:

<annotation>
        <folder>VOC</folder>
        <filename>firc_plasmodium_1181.jpg</filename>
        <path>C:/Users/Administrator/Desktop/data/JPEGImages/firc_plasmodium_1181.jpg</path>
        <source>
            <database>My Database</database>
            <annotation>VOC2012</annotation>
            <image>flickr</image>
            <flickrid>NULL</flickrid>
        </source>
        <owner>
            <flickrid>NULL</flickrid>
            <name>company</name>
        </owner>
        <size>
            <width>750</width>
            <height>750</height>
            <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>253</xmin>
                <ymin>83</ymin>
                <xmax>293</xmax>
                <ymax>123</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>242</xmin>
                <ymin>117</ymin>
                <xmax>282</xmax>
                <ymax>157</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>498</xmin>
                <ymin>0</ymin>
                <xmax>538</xmax>
                <ymax>40</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>566</xmin>
                <ymin>7</ymin>
                <xmax>606</xmax>
                <ymax>47</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>299</xmin>
                <ymin>275</ymin>
                <xmax>339</xmax>
                <ymax>315</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>382</xmin>
                <ymin>332</ymin>
                <xmax>422</xmax>
                <ymax>372</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>396</xmin>
                <ymin>577</ymin>
                <xmax>436</xmax>
                <ymax>617</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>580</xmin>
                <ymin>572</ymin>
                <xmax>620</xmax>
                <ymax>612</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>676</xmin>
                <ymin>102</ymin>
                <xmax>716</xmax>
                <ymax>142</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>439</xmin>
                <ymin>159</ymin>
                <xmax>479</xmax>
                <ymax>199</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>540</xmin>
                <ymin>177</ymin>
                <xmax>580</xmax>
                <ymax>217</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>513</xmin>
                <ymin>221</ymin>
                <xmax>553</xmax>
                <ymax>261</ymax>
            </bndbox>
        </object>
</annotation>

上面格式为标准VOC格式符合行业标准规范,而且使用网上其他脚本不容易出错。

下载地址: https://download.csdn.net/download/FL1623863129/89755231

相关推荐
红色的山茶花8 小时前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-build.py
笔记·深度学习·yolo
咏&志11 小时前
目标检测之YOLO论文简读
人工智能·yolo·目标检测
North_D1 天前
ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
阿_旭1 天前
如何在C++中使用YOLO模型进行目标检测
人工智能·yolo·目标检测
CP-DD1 天前
目标跟踪(Object Tracking) vs. 目标识别(Object Recognition)
人工智能·计算机视觉·目标跟踪
量子-Alex1 天前
【目标检测】【YOLOv12】YOLOv12:Attention-Centric Real-Time Object Detectors
人工智能·目标检测·计算机视觉
向哆哆1 天前
动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
深度学习·yolo·目标跟踪·yolov8
Black_Rock_br1 天前
仿 Sora 之形,借物理模拟之技绘视频之彩
人工智能·目标检测·计算机视觉
itom19001 天前
Luckfox Pico Max运行RKNN-Toolkit2中的Yolov5 adb USB仿真
人工智能·yolo
红色的山茶花1 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-augment.py
笔记·深度学习·yolo