[数据集][目标检测]疟疾恶性疟原虫物种目标检测数据集VOC+YOLO格式948张1类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):948

标注数量(xml文件个数):948

标注数量(txt文件个数):948

标注类别数:1

标注类别名称:["plasmodium"]

每个类别标注的框数:

plasmodium 框数 = 7628

总框数:7628

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:网上看到同类数据集他们标注都存在问题。这个数据集专门经过写代码修复

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

标注示例:

别人标注文件:

上面明显存在几个错误,labelImg标注xmin,ymin等坐标信息都是整数,而且labelImg标准类别是<name></name>表示,显然无法正常读取,此外标注信息没有图片宽高等关键信息,容易导致后续脚本编写难度增大,经过修复后变成如下:

复制代码
<annotation>
        <folder>VOC</folder>
        <filename>firc_plasmodium_1181.jpg</filename>
        <path>C:/Users/Administrator/Desktop/data/JPEGImages/firc_plasmodium_1181.jpg</path>
        <source>
            <database>My Database</database>
            <annotation>VOC2012</annotation>
            <image>flickr</image>
            <flickrid>NULL</flickrid>
        </source>
        <owner>
            <flickrid>NULL</flickrid>
            <name>company</name>
        </owner>
        <size>
            <width>750</width>
            <height>750</height>
            <depth>3</depth>
        </size>
        <segmented>0</segmented>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>253</xmin>
                <ymin>83</ymin>
                <xmax>293</xmax>
                <ymax>123</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>242</xmin>
                <ymin>117</ymin>
                <xmax>282</xmax>
                <ymax>157</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>498</xmin>
                <ymin>0</ymin>
                <xmax>538</xmax>
                <ymax>40</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>566</xmin>
                <ymin>7</ymin>
                <xmax>606</xmax>
                <ymax>47</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>299</xmin>
                <ymin>275</ymin>
                <xmax>339</xmax>
                <ymax>315</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>382</xmin>
                <ymin>332</ymin>
                <xmax>422</xmax>
                <ymax>372</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>396</xmin>
                <ymin>577</ymin>
                <xmax>436</xmax>
                <ymax>617</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>580</xmin>
                <ymin>572</ymin>
                <xmax>620</xmax>
                <ymax>612</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>676</xmin>
                <ymin>102</ymin>
                <xmax>716</xmax>
                <ymax>142</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>439</xmin>
                <ymin>159</ymin>
                <xmax>479</xmax>
                <ymax>199</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>540</xmin>
                <ymin>177</ymin>
                <xmax>580</xmax>
                <ymax>217</ymax>
            </bndbox>
        </object>
        <object>
            <name>plasmodium</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>513</xmin>
                <ymin>221</ymin>
                <xmax>553</xmax>
                <ymax>261</ymax>
            </bndbox>
        </object>
</annotation>

上面格式为标准VOC格式符合行业标准规范,而且使用网上其他脚本不容易出错。

下载地址: https://download.csdn.net/download/FL1623863129/89755231

相关推荐
放羊郎15 分钟前
人工智能算法优化YOLO的目标检测能力
人工智能·算法·yolo·视觉slam·建图
xuehaikj21 分钟前
基于YOLOv5-AUX的棕熊目标检测与识别系统实现
人工智能·yolo·目标检测
一勺汤8 小时前
YOLO12 改进、魔改|秩增强线性注意力RALA,通过增强 KV 缓冲与输出特征的矩阵秩,增强 YOLO 对小目标、复杂场景目标的识别能力
线性代数·yolo·矩阵·yolov12·yolo12·yolo12改进·小目标
深蓝海拓9 小时前
YOLO v11的学习记录(五) 使用自定义数据从头训练一个实例分割的模型
学习·yolo
AI浩17 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
深度学习lover19 小时前
<数据集>yolo航拍斑马线识别数据集<目标检测>
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集·航拍斑马线识别
Sunhen_Qiletian1 天前
YOLOv2算法详解(上篇):从经典到进化的目标检测之路
算法·yolo·目标检测
QTreeY1231 天前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
创思通信1 天前
基于K210的人脸识别开锁
人工智能·yolo·人脸识别·k210
Evand J1 天前
【MATLAB例程】2雷达二维目标跟踪滤波系统-UKF(无迹卡尔曼滤波)实现,目标匀速运动模型(带扰动)。附代码下载链接
开发语言·matlab·目标跟踪·滤波·卡尔曼滤波