自然语言处理_tf-idf

python 复制代码
import pandas as pd
import math

1.数据预处理

python 复制代码
docA = "The cat sat on my face"
docB = "The dog sat on my bed"

wordsA = docA.split(" ")
wordsB = docB.split(" ")

wordsSet = set(wordsA).union(set(wordsB))
print(wordsSet)
{'on', 'my', 'face', 'sat', 'dog', 'The', 'cat', 'bed'}

2.计算词的频数

python 复制代码
wordCountA = dict.fromkeys(wordsSet, 0)
wordCountB = dict.fromkeys(wordsSet, 0)

for word in wordsA:
    wordCountA[word] += 1
for word in wordsB:
    wordCountB[word] += 1

pd.DataFrame([wordCountA, wordCountB])    

| | on | my | face | sat | dog | The | cat | bed |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |

1 1 1 0 1 1 1 0 1

3.计算词的频率

python 复制代码
def computeTF(wordCount, docWords):
    tfDict = {}
    docCount = len(docWords)
    for word, count in wordCount.items():
        tfDict[word] = count / float(docCount)
    return tfDict

tfA = computeTF(wordCountA, wordsA)
tfB = computeTF(wordCountB, wordsB)
print("tfA ", tfA)
tfA  {'on': 0.16666666666666666, 'my': 0.16666666666666666, 'face': 0.16666666666666666, 'sat': 0.16666666666666666, 'dog': 0.0, 'The': 0.16666666666666666, 'cat': 0.16666666666666666, 'bed': 0.0}

4.计算逆文档频率

python 复制代码
def computeIDF(docList):
    idfDict = {}
    doc_len = len(docList)
    
    idfDict = dict.fromkeys(docList[0].keys(), 0)
    
    for doc in docList:
        for word, count in doc.items():
            if count > 0:
                idfDict[word] += 1
      
    for word, count in idfDict.items():
        idfDict[word] = math.log10((doc_len + 1) / float(count + 1))
    return idfDict

idf = computeIDF([wordCountA, wordCountB])
print(idf)
{'on': 0.0, 'my': 0.0, 'face': 0.17609125905568124, 'sat': 0.0, 'dog': 0.17609125905568124, 'The': 0.0, 'cat': 0.17609125905568124, 'bed': 0.17609125905568124}

5.计算 TF-IDF

python 复制代码
def computeTFIDF(tf, idf):
    tfidf = {}
    for word, tf in tf.items():
        tfidf[word] = tf * idf[word]
    return tfidf

tfidfA = computeTFIDF(tfA, idf)
tfidfB = computeTFIDF(tfB, idf)
pd.DataFrame([tfidfA, tfidfB])

| | on | my | face | sat | dog | The | cat | bed |
| 0 | 0.0 | 0.0 | 0.029349 | 0.0 | 0.000000 | 0.0 | 0.029349 | 0.000000 |

1 0.0 0.0 0.000000 0.0 0.029349 0.0 0.000000 0.029349
相关推荐
Guofu_Liao8 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
sp_fyf_202416 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
思通数科多模态大模型17 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
龙的爹233318 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力
sp_fyf_202418 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
爱喝白开水a18 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调
Guofu_Liao20 小时前
大语言模型中Softmax函数的计算过程及其参数描述
人工智能·语言模型·自然语言处理
曼城周杰伦21 小时前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3
Donvink21 小时前
多模态大语言模型——《动手学大模型》实践教程第六章
人工智能·深度学习·语言模型·自然语言处理·llama
我爱学Python!21 小时前
解决复杂查询难题:如何通过 Self-querying Prompting 提高 RAG 系统效率?
人工智能·程序人生·自然语言处理·大模型·llm·大语言模型·rag