自然语言处理_tf-idf

python 复制代码
import pandas as pd
import math

1.数据预处理

python 复制代码
docA = "The cat sat on my face"
docB = "The dog sat on my bed"

wordsA = docA.split(" ")
wordsB = docB.split(" ")

wordsSet = set(wordsA).union(set(wordsB))
print(wordsSet)
复制代码
{'on', 'my', 'face', 'sat', 'dog', 'The', 'cat', 'bed'}

2.计算词的频数

python 复制代码
wordCountA = dict.fromkeys(wordsSet, 0)
wordCountB = dict.fromkeys(wordsSet, 0)

for word in wordsA:
    wordCountA[word] += 1
for word in wordsB:
    wordCountB[word] += 1

pd.DataFrame([wordCountA, wordCountB])    

| | on | my | face | sat | dog | The | cat | bed |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |

1 1 1 0 1 1 1 0 1

3.计算词的频率

python 复制代码
def computeTF(wordCount, docWords):
    tfDict = {}
    docCount = len(docWords)
    for word, count in wordCount.items():
        tfDict[word] = count / float(docCount)
    return tfDict

tfA = computeTF(wordCountA, wordsA)
tfB = computeTF(wordCountB, wordsB)
print("tfA ", tfA)
复制代码
tfA  {'on': 0.16666666666666666, 'my': 0.16666666666666666, 'face': 0.16666666666666666, 'sat': 0.16666666666666666, 'dog': 0.0, 'The': 0.16666666666666666, 'cat': 0.16666666666666666, 'bed': 0.0}

4.计算逆文档频率

python 复制代码
def computeIDF(docList):
    idfDict = {}
    doc_len = len(docList)
    
    idfDict = dict.fromkeys(docList[0].keys(), 0)
    
    for doc in docList:
        for word, count in doc.items():
            if count > 0:
                idfDict[word] += 1
      
    for word, count in idfDict.items():
        idfDict[word] = math.log10((doc_len + 1) / float(count + 1))
    return idfDict

idf = computeIDF([wordCountA, wordCountB])
print(idf)
复制代码
{'on': 0.0, 'my': 0.0, 'face': 0.17609125905568124, 'sat': 0.0, 'dog': 0.17609125905568124, 'The': 0.0, 'cat': 0.17609125905568124, 'bed': 0.17609125905568124}

5.计算 TF-IDF

python 复制代码
def computeTFIDF(tf, idf):
    tfidf = {}
    for word, tf in tf.items():
        tfidf[word] = tf * idf[word]
    return tfidf

tfidfA = computeTFIDF(tfA, idf)
tfidfB = computeTFIDF(tfB, idf)
pd.DataFrame([tfidfA, tfidfB])

| | on | my | face | sat | dog | The | cat | bed |
| 0 | 0.0 | 0.0 | 0.029349 | 0.0 | 0.000000 | 0.0 | 0.029349 | 0.000000 |

1 0.0 0.0 0.000000 0.0 0.029349 0.0 0.000000 0.029349
相关推荐
亚里随笔10 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
qqxhb13 小时前
零基础数据结构与算法——第七章:算法实践与工程应用-搜索引擎
算法·搜索引擎·tf-idf·倒排索引·pagerank·算法库
数据知道16 小时前
机器翻译:模型微调(Fine-tuning)与调优详解
人工智能·自然语言处理·机器翻译
未来之窗软件服务16 小时前
自建知识库,向量数据库 体系建设(五)之 中文分词库 HanLP ——仙盟创梦IDE
自然语言处理·中文分词·仙盟创梦ide·东方仙盟
skywalk816320 小时前
LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。
人工智能·语言模型·自然语言处理
Websites1 天前
Hyperf 百度翻译接口实现方案
开发语言·自然语言处理·php·自动翻译
数据知道1 天前
机器翻译:Hugging Face库详解
人工智能·自然语言处理·机器翻译
Blossom.1181 天前
把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战
人工智能·python·深度学习·机器学习·自然语言处理·分类·bert
adminwolf1 天前
支持小语种的在线客服系统,自动翻译双方语言,适合对接跨境海外客户
人工智能·自然语言处理·机器翻译
guidovans1 天前
基于大语言模型的爬虫数据清洗与结构化
人工智能·爬虫·语言模型·自然语言处理