【小波去噪】【matlab】基于小波分析的一维信号滤波(对照组:中值滤波、均值滤波、高斯滤波)

链接1-傅里叶变换
链接2-傅立叶分析和小波分析间的关系
链接3-小波变换(wavelet transform)的通俗解释
链接4-小波基的选择

1.示例代码

matlab 复制代码
function main_wavelet
clc
clear
close all
warning off
%% 1.信号生成
time_length = 10;%总时长,秒
sample_rate = 100;% 采样率,Hz
freq = 10; % 生成的信号的频率,Hz
t = linspace(0, time_length, time_length * sample_rate);  % 生成时间轴
signal = 2*sin(2 * pi * freq * t);% 生成正弦信号
noise = 0.5 * randn(size(signal));% 生成白噪声,高斯过程
noisy_signal = signal + noise;% 将正弦信号和噪声信号相加生成含噪采集数据

figure(1)
plot(t,signal,'b-')
hold on
plot(t, noisy_signal,'r-');
hold on
plot(t, noise,'k-');
xlabel('Time (s)');
ylabel('Amplitude');
legend('原信号','含噪信号','噪声')

% save('noise.mat','noisy_signal')
%% 2.小波变换
% 设置小波函数和变换阶数
wname = 'db4';  % 选用 Daubechies 4 小波
level = 2;      % 小波变换的阶数
% 进行小波变换
[C, L] = wavedec(noisy_signal, level, wname);
% 提取细节系数
D = detcoef(C, L, level); 
% 对细节系数进行阈值处理
sigma = median(abs(D)) / 0.6745;  % 计算阈值,robust estimator估计方法
D = wthresh(D, 'h', sigma);       % 硬阈值处理
% 重构信号
data_denoised = wrcoef('a', C, L, wname, level);

%% 3.绘制结果
figure(3)
subplot(3,1,1); plot(t, noisy_signal,'b-'); title('原始信号(含噪声)');
subplot(3,1,2); plot(t,signal,'b-'); title('原始信号(无噪声)');
subplot(3,1,3); plot(t,data_denoised,'b-'); title('降噪后的信号');

figure(4)
plot(t,signal,'b-')
hold on
plot(t,data_denoised,'r-')
legend('原始信号(无噪声)','降噪后的信号')

2.对比滤波器

作为对比,以下代码直接在第1节的main_wavelet.m之后运行即可

中值滤波、均值滤波、高斯滤波

matlab 复制代码
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 一维中值滤波
n=21;                % n为模板长度,值可以改变
y=medfilt1(noisy_signal,n);
figure(101)
plot(t,noisy_signal,'b-')
hold on
plot(t,y,'r-')
legend('中值滤波前的序列','中值滤波后的序列')
%% 一维均值滤波
n=5;                 % n为模板长度,值可以改变
mean=ones(1,n)./n;   % mean为1×n的模板,各数组元素的值均为1/n
y = conv(noisy_signal,mean);
y=y(1:length(y)-length(mean)+1);
figure(102);
plot(t,noisy_signal,'b-')
hold on
plot(t,y,'r-')
legend('均值滤波前的序列','均值滤波后的序列')
%% 一维高斯滤波
gau=[0.0009 0.0175 0.1295 0.3521 0.3521 0.1295 0.0175 0.0009];   % 标准差为1时的高斯函数一维模板,如果标准差不为1,则要修改模板
% gau=[0.0090,0.4910,0.4910,0.0090];                               % 标准差为0.5时的高斯函数一维模板,如果标准差不为0.5,则要修改模板
y=conv(noisy_signal,gau);
y=y(1:length(y)-length(gau)+1);
figure(103);
plot(t,noisy_signal,'b-')
hold on
plot(t,y,'r-')
legend('高斯滤波前的序列','高斯滤波后的序列')

3.封装代码

主代码

matlab 复制代码
function wavelet_fun_main240919
clc
clear
close all
warning off
%% 1.信号生成
time_length = 10;%总时长,秒
sample_rate = 100;% 采样率,Hz
freq = 10; % 生成的信号的频率,Hz
t = linspace(0, time_length, time_length * sample_rate);  % 生成时间轴
noise = 0.5 * randn(size(t));% 生成白噪声,高斯过程
Results_JGLD_ideal = 2*sin(2 * pi * freq * t);% 生成正弦信号
Results_JGLD_error = Results_JGLD_ideal + noise;% 将正弦信号和噪声信号相加生成含噪采集数据

%% 小波降噪处理
dt=1/sample_rate;%采样时间间隔
data_denoised=WaveletGenerate(Results_JGLD_ideal,Results_JGLD_error,dt);

%% 画图
figure(1)
plot(t,Results_JGLD_ideal,'b-')
hold on
plot(t,data_denoised,'r-')
legend('原始信号(无噪声)','降噪后的信号')

WaveletGenerate.m

matlab 复制代码
function data_denoised=WaveletGenerate(Results_JGLD_ideal,Results_JGLD_error,dt)
%% 1.信号生成
signal = Results_JGLD_ideal;% 原始信号
noisy_signal = Results_JGLD_error;%含噪采集数据
% dt=0.01;%时间间隔
t=dt:dt:(length(signal))*dt;
%% 2.小波变换
% 设置小波函数和变换阶数
wname = 'db4';  % 选用 Daubechies 4 小波
level = 1;      % 小波变换的阶数
% 进行小波变换
[C, L] = wavedec(noisy_signal, level, wname);
% 提取细节系数
D = detcoef(C, L, level); 
% 对细节系数进行阈值处理
sigma = median(abs(D)) / 0.6745;  % 计算阈值,robust estimator估计方法
D = wthresh(D, 'h', sigma);       % 硬阈值处理
% 重构信号
data_denoised = wrcoef('a', C, L, wname, level);
相关推荐
Swift社区2 小时前
在 Swift 中实现字符串分割问题:以字典中的单词构造句子
开发语言·ios·swift
没头脑的ht2 小时前
Swift内存访问冲突
开发语言·ios·swift
没头脑的ht2 小时前
Swift闭包的本质
开发语言·ios·swift
wjs20242 小时前
Swift 数组
开发语言
stm 学习ing3 小时前
FPGA 第十讲 避免latch的产生
c语言·开发语言·单片机·嵌入式硬件·fpga开发·fpga
湫ccc4 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe4 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin4 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python