深度学习——基础知识

深度学习的重点在于优化,其中很重要的步骤在于如何调参,会涉及到一些微积分等数学知识。不同于以往接触到的数值运算,深度(机器)学习都是关于张量Tensor(向量)的计算,Python中最常用的包就是Numpy,其次张量类支持调用包可自动微分。

一、基础操作运算

1.1 导入torch

先导入torch,虽然是pytorch版本的深度学习,但是代码中使用torch,而不是pytorch.

1.2 arange创建行向量

1.3 通过张量的shape属性来访问张量的形状或维度

1.4 张量的大小

张量中元素的总数,即shape属性中所有元素的乘积。

一维向量的shape和size是相同的数值

1.5 改变张量的形状reshape

要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。

在reshape时,不需要特别指定每个维度的参数,在知道元素总数的前提下,知道宽度(高度)后,高度(宽度)会被自动计算得出,不需要自己手动计算,可以通过-1来调用此自动计算出形状。

1.6 初始化矩阵

1.6.1 将张量中所有元素设置为0

1.6.2 将张量中所有元素设置为1

1.6.3 标准高斯分布:均值为0,标准差为1,随机初始化参数的值

1.6.4 自定义张量

可以通过包含数值的python列表(嵌套列表)来为所需张量中的每个元素赋予确定值。

二、张量运算符

2.1 按元素计算

2.2 张量连接

dim=0对行进行拼接;dim=1对列进行拼接。

2.3 逻辑运算符

2.3 求和

三、广播机制

形状相同的张量按元素操作,在某些情况下,即使形状不同,可以通过调用广播机制来执行按元素操作。

广播机制在大多数情况下,沿着数组中长度为1的轴进行广播。

a和b分别是31和1 2的矩阵,如果让它们相加,它们的形状不匹配,我们将两个矩阵广播为一个更大的3*2矩阵,矩阵a将复制列,矩阵b将复制行,然后按元素相加。
a + b = [ 0 0 1 1 2 2 ] + [ 0 1 0 1 0 1 ] = [ 0 1 1 2 2 3 ] a+b= \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 &2 \end{bmatrix}+\begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} a+b= 012012 + 000111 = 012123

四、转换为其他Python对象

torch张量和numpy数组可以互相转化.

要将大小为1的张量转换为python标量,可以用item函数或者python的内置函数。

相关推荐
lihuayong16 分钟前
LangGraph React智能体 - 推理与行动的完美结合
人工智能·langgraph·react 智能体
机器之心19 分钟前
Meta用40万个GPU小时做了一个实验,只为弄清强化学习Scaling Law
人工智能·openai
曾经的三心草22 分钟前
OpenCV5-图像特征harris-sift-特征匹配-图像全景拼接-答题卡识别判卷
人工智能·opencv·计算机视觉
慧星云36 分钟前
魔多 AI 支持 Wan 系列在线训练 :解锁视频生成新高度
人工智能
麻辣兔变形记42 分钟前
Solidity 合约超限问题及优化策略:以 FHEFactory 为例
人工智能·区块链
渡我白衣1 小时前
未来的 AI 操作系统(二)——世界即界面:自然语言成为新的人机交互协议
人工智能·语言模型·人机交互
墨利昂1 小时前
词向量:自然语言处理技术体系的核心基石
人工智能·自然语言处理
格林威2 小时前
可见光工业相机半导体制造领域中的应用
图像处理·人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
星期天要睡觉2 小时前
计算机视觉(opencv)——基于 MediaPipe 人体姿态检测
人工智能·opencv·计算机视觉
资讯全球2 小时前
2025机器人自动化打磨抛光设备及汽车零件打磨新技术10月应用解析
人工智能·机器人·自动化