深度学习——基础知识

深度学习的重点在于优化,其中很重要的步骤在于如何调参,会涉及到一些微积分等数学知识。不同于以往接触到的数值运算,深度(机器)学习都是关于张量Tensor(向量)的计算,Python中最常用的包就是Numpy,其次张量类支持调用包可自动微分。

一、基础操作运算

1.1 导入torch

先导入torch,虽然是pytorch版本的深度学习,但是代码中使用torch,而不是pytorch.

1.2 arange创建行向量

1.3 通过张量的shape属性来访问张量的形状或维度

1.4 张量的大小

张量中元素的总数,即shape属性中所有元素的乘积。

一维向量的shape和size是相同的数值

1.5 改变张量的形状reshape

要想改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。

在reshape时,不需要特别指定每个维度的参数,在知道元素总数的前提下,知道宽度(高度)后,高度(宽度)会被自动计算得出,不需要自己手动计算,可以通过-1来调用此自动计算出形状。

1.6 初始化矩阵

1.6.1 将张量中所有元素设置为0

1.6.2 将张量中所有元素设置为1

1.6.3 标准高斯分布:均值为0,标准差为1,随机初始化参数的值

1.6.4 自定义张量

可以通过包含数值的python列表(嵌套列表)来为所需张量中的每个元素赋予确定值。

二、张量运算符

2.1 按元素计算

2.2 张量连接

dim=0对行进行拼接;dim=1对列进行拼接。

2.3 逻辑运算符

2.3 求和

三、广播机制

形状相同的张量按元素操作,在某些情况下,即使形状不同,可以通过调用广播机制来执行按元素操作。

广播机制在大多数情况下,沿着数组中长度为1的轴进行广播。

a和b分别是31和1 2的矩阵,如果让它们相加,它们的形状不匹配,我们将两个矩阵广播为一个更大的3*2矩阵,矩阵a将复制列,矩阵b将复制行,然后按元素相加。
a + b = [ 0 0 1 1 2 2 ] + [ 0 1 0 1 0 1 ] = [ 0 1 1 2 2 3 ] a+b= \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 2 &2 \end{bmatrix}+\begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 3 \end{bmatrix} a+b= 012012 + 000111 = 012123

四、转换为其他Python对象

torch张量和numpy数组可以互相转化.

要将大小为1的张量转换为python标量,可以用item函数或者python的内置函数。

相关推荐
AI人工智能+8 分钟前
应用俄文OCR技术,为跨语言交流与数字化管理提供更强大的支持
人工智能·ocr·文字识别
UQI-LIUWJ19 分钟前
李宏毅LLM笔记: AI Agent
人工智能·笔记
百度Geek说32 分钟前
百度阮瑜:百度大模型应用赋能产业智变|2025全球数字经济大会
人工智能
大明哥_36 分钟前
最新 Coze 教程:40+ 条视频涨粉 10W+,利用 Coze 工作流 + 视频组件,一键制作爆款小人国微景动画视频
人工智能·agent
SugarPPig44 分钟前
ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
人工智能
孤狼warrior1 小时前
灰色预测模型
人工智能·python·算法·数学建模
AI生存日记1 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
求职小程序华东同舟求职1 小时前
龙旗科技社招校招入职测评25年北森笔试测评题库答题攻略
大数据·人工智能·科技
李元豪1 小时前
【行云流水ai笔记】粗粒度控制:推荐CTRL、GeDi 细粒度/多属性控制:推荐TOLE、GPT-4RL
人工智能·笔记
机器学习之心1 小时前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络