【machine learning-十-grading descent梯度下降实现】

grading descent

grading descent 算法就是更新参数,今天来学习下如何更新w和b

梯度下降

还是以线性回归的均方差损失函数如下为例:

损失函数的可视化图如下 :

横轴和纵轴分别是w和b,z轴是损失值。梯度更新w和b,让损失能走到局部最小值附近,这个局部的最小值意味着,在它周围损失的变化已经很小了。

参数更新方法 --导数和学习率

更新的方法如下:


是learning rate,也就是学习率。

它决定了梯度下降的幅度,也就是一次走大步,还是小步,通常学习率在0~1之间。

这一项是导数(其实是偏导数),微积分中的概念,不过不懂也没问题,下一节会简单介绍,且刚开始不需要深入的探究。

通常情况下,正确的做法是w和b同时更新:

当然也有特殊的情况,非同时更新,但是很少见,所以我们按照正确的左侧做法,同时更新w和b就可以。

从导数项直观理解梯度下降

为了直观理解,还是先假设b为0,损失函数映射到二维空间上

通过上面的图可以看出,损失函数的最小值是在曲线的底,所以我们的目标就是要损失靠近这个点。

而导数其实是某个具体点的斜率,于是就有图中的两种情况:

  • 导数为正数,w-学习率*导数 就是在减少w,此时刚好是在靠近最小值的点
  • 导数为负数,w-学习率*导数就是在增大w,此时也是是在靠近最小值的点

也就是说无论是在最小值的左侧或者右侧的w,都能通过上面的公式,更新到靠近最小值的w点

资料来源-吴恩达《机器学习》

相关推荐
西西o17 分钟前
MindSpeed MM多模态模型微调实战指南
人工智能
也许是_23 分钟前
大模型应用技术之 详解 MCP 原理
人工智能·python
Codebee30 分钟前
#专访Ooder架构作者|A2UI时代全栈架构的四大核心之问,深度解析设计取舍
人工智能
亚马逊云开发者41 分钟前
如何在亚马逊云科技部署高可用MaxKB知识库应用
人工智能
亚里随笔1 小时前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
牛客企业服务1 小时前
AI面试实用性解析:不是“能不能用”,而是“怎么用好”
人工智能·面试·职场和发展
MicroTech20252 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
救救孩子把2 小时前
50-机器学习与大模型开发数学教程-4-12 Bootstrap方法
人工智能·机器学习·bootstrap
趣知岛2 小时前
AI是否能代替从业者
人工智能
allan bull3 小时前
在节日中寻找平衡:圣诞的欢乐与传统节日的温情
人工智能·学习·算法·职场和发展·生活·求职招聘·节日