【machine learning-十-grading descent梯度下降实现】

grading descent

grading descent 算法就是更新参数,今天来学习下如何更新w和b

梯度下降

还是以线性回归的均方差损失函数如下为例:

损失函数的可视化图如下 :

横轴和纵轴分别是w和b,z轴是损失值。梯度更新w和b,让损失能走到局部最小值附近,这个局部的最小值意味着,在它周围损失的变化已经很小了。

参数更新方法 --导数和学习率

更新的方法如下:


是learning rate,也就是学习率。

它决定了梯度下降的幅度,也就是一次走大步,还是小步,通常学习率在0~1之间。

这一项是导数(其实是偏导数),微积分中的概念,不过不懂也没问题,下一节会简单介绍,且刚开始不需要深入的探究。

通常情况下,正确的做法是w和b同时更新:

当然也有特殊的情况,非同时更新,但是很少见,所以我们按照正确的左侧做法,同时更新w和b就可以。

从导数项直观理解梯度下降

为了直观理解,还是先假设b为0,损失函数映射到二维空间上

通过上面的图可以看出,损失函数的最小值是在曲线的底,所以我们的目标就是要损失靠近这个点。

而导数其实是某个具体点的斜率,于是就有图中的两种情况:

  • 导数为正数,w-学习率*导数 就是在减少w,此时刚好是在靠近最小值的点
  • 导数为负数,w-学习率*导数就是在增大w,此时也是是在靠近最小值的点

也就是说无论是在最小值的左侧或者右侧的w,都能通过上面的公式,更新到靠近最小值的w点

资料来源-吴恩达《机器学习》

相关推荐
科研小白_1 分钟前
基于遗传算法优化BP神经网络(GA-BP)的数据时序预测
人工智能·算法·回归
互联网江湖1 小时前
蓝桥杯出局,少儿编程的价值祛魅时刻?
人工智能·生活
Elastic 中国社区官方博客1 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
paid槮2 小时前
OpenCV图像形态学详解
人工智能·opencv·计算机视觉
点控云3 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
救救孩子把6 小时前
14-机器学习与大模型开发数学教程-第1章 1-6 费马定理与极值判定
人工智能·数学·机器学习
诸葛箫声6 小时前
十类图片深度学习提升准确率(0.9317)
人工智能·深度学习
救救孩子把6 小时前
11-机器学习与大模型开发数学教程-第1章1-3 极限与连续性
人工智能·数学·机器学习
OG one.Z6 小时前
01_机器学习初步
人工智能·机器学习
HyperAI超神经6 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克