【machine learning-十-grading descent梯度下降实现】

grading descent

grading descent 算法就是更新参数,今天来学习下如何更新w和b

梯度下降

还是以线性回归的均方差损失函数如下为例:

损失函数的可视化图如下 :

横轴和纵轴分别是w和b,z轴是损失值。梯度更新w和b,让损失能走到局部最小值附近,这个局部的最小值意味着,在它周围损失的变化已经很小了。

参数更新方法 --导数和学习率

更新的方法如下:


是learning rate,也就是学习率。

它决定了梯度下降的幅度,也就是一次走大步,还是小步,通常学习率在0~1之间。

这一项是导数(其实是偏导数),微积分中的概念,不过不懂也没问题,下一节会简单介绍,且刚开始不需要深入的探究。

通常情况下,正确的做法是w和b同时更新:

当然也有特殊的情况,非同时更新,但是很少见,所以我们按照正确的左侧做法,同时更新w和b就可以。

从导数项直观理解梯度下降

为了直观理解,还是先假设b为0,损失函数映射到二维空间上

通过上面的图可以看出,损失函数的最小值是在曲线的底,所以我们的目标就是要损失靠近这个点。

而导数其实是某个具体点的斜率,于是就有图中的两种情况:

  • 导数为正数,w-学习率*导数 就是在减少w,此时刚好是在靠近最小值的点
  • 导数为负数,w-学习率*导数就是在增大w,此时也是是在靠近最小值的点

也就是说无论是在最小值的左侧或者右侧的w,都能通过上面的公式,更新到靠近最小值的w点

资料来源-吴恩达《机器学习》

相关推荐
延凡科技27 分钟前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_9413297230 分钟前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔2 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案2 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信2 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博4 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件4 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车5 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经5 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘6 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt