【machine learning-十-grading descent梯度下降实现】

grading descent

grading descent 算法就是更新参数,今天来学习下如何更新w和b

梯度下降

还是以线性回归的均方差损失函数如下为例:

损失函数的可视化图如下 :

横轴和纵轴分别是w和b,z轴是损失值。梯度更新w和b,让损失能走到局部最小值附近,这个局部的最小值意味着,在它周围损失的变化已经很小了。

参数更新方法 --导数和学习率

更新的方法如下:


是learning rate,也就是学习率。

它决定了梯度下降的幅度,也就是一次走大步,还是小步,通常学习率在0~1之间。

这一项是导数(其实是偏导数),微积分中的概念,不过不懂也没问题,下一节会简单介绍,且刚开始不需要深入的探究。

通常情况下,正确的做法是w和b同时更新:

当然也有特殊的情况,非同时更新,但是很少见,所以我们按照正确的左侧做法,同时更新w和b就可以。

从导数项直观理解梯度下降

为了直观理解,还是先假设b为0,损失函数映射到二维空间上

通过上面的图可以看出,损失函数的最小值是在曲线的底,所以我们的目标就是要损失靠近这个点。

而导数其实是某个具体点的斜率,于是就有图中的两种情况:

  • 导数为正数,w-学习率*导数 就是在减少w,此时刚好是在靠近最小值的点
  • 导数为负数,w-学习率*导数就是在增大w,此时也是是在靠近最小值的点

也就是说无论是在最小值的左侧或者右侧的w,都能通过上面的公式,更新到靠近最小值的w点

资料来源-吴恩达《机器学习》

相关推荐
cxr8282 分钟前
深度解析顶级 Doc Agent System Prompt 的架构与实践
网络·人工智能·架构·prompt·ai智能体·ai赋能·上下文工程
TGITCIC3 分钟前
User Prompt 与 System Prompt:大模型沟通的“双引擎”机制深度拆解
人工智能·大模型·prompt·提示词·ai大模型·大模型ai·上下文工程
leiming68 分钟前
ResNetLayer 类
人工智能·神经网络·计算机视觉
麦麦大数据9 分钟前
F045 vue+flask棉花病虫害CNN识别+AI问答知识neo4j 图谱可视化系统深度学习神经网络
人工智能·深度学习·神经网络·cnn·可视化·智能问答·病虫害识别
IT_陈寒15 分钟前
Java 17实战:我从老旧Spring项目迁移中总结的7个关键避坑点
前端·人工智能·后端
渡我白衣26 分钟前
字符串的陷阱与艺术——std::string全解析
网络·c++·人工智能·自然语言处理·智能路由器·信息与通信·caffe
Allen2000026 分钟前
Hello-Agents task2 大语言模型基础
人工智能·语言模型·自然语言处理
music&movie33 分钟前
多模态工程师面试--准备
人工智能
机器之心1 小时前
GPT-5.1发布,OpenAI开始拼情商
人工智能·openai
YangYang9YangYan1 小时前
高职单招与统招比较及职业发展指南
大数据·人工智能·数据分析