【隐私计算篇】利用多方安全计算MPC实现VGG16人脸识别隐私计算模型

1. 背景介绍

本文主要介绍一种利用多方安全计算MPC技术,实现VGG16的人脸识别模型,侧重于模型推理阶段,此工作是多年前完成的,目前已经公开专利,其中涉及到最小化多方安全计算(MPC)以及明密文混合计算的思想,仅供参考。

人脸识别是一种基于生物特征识别技术的身份验证和识别方法,在多种场景中广泛应用,比如安防、银行、终端设备等,更贴近生活的还有支付宝的扫脸支付。人脸识别在各领域的广泛应用带来了便利,但也引发了隐私和数据安全方面的讨论以及担忧,传统的人脸识别系统在数据采集、存储和处理过程中很可能会存在隐私泄露的风险。

比如传统人脸识别系统通常需要将用户的面部数据上传到中央服务器进行处理,如果这些数据被黑客入侵、内部人员滥用或系统漏洞利用,可能会导致用户敏感信息泄露。此外,某些公司或机构可能会将收集到的人脸数据用于未经用户同意的商业或其他用途,侵犯个人隐私。

鉴于上述原因,很有必要采用隐私保护技术。隐私计算技术(如联邦学习、差分隐私、多方安全计算等)允许在不直接共享原始数据的前提下进行人脸识别模型的训练和推理,从而防止数据滥用和泄露。实现隐私计算的人脸识别是为了在保证人脸识别技术有效性的同时,最大程度地保护用户的个人隐私。

2. 算法介绍

本文主要介绍利用安全多方计算(MPC)实现VGG16人脸识别模型的推理预测。在介绍具体算法之前,需要对MPC有一定的了解,有助于理解后续的深度学习算法隐私计算化改造。安全多方计算(MPC)是一种密码学技术,它允许多个参与方在不泄露各自私有数据的前提下,协同计算一个共同的函数结果。关于MPC的介绍,这里不做详细展开,有兴趣的话可以看下冯登国院士关于MPC的基础知识分享,包括 基于秘密分享方法的MPC以及基于混淆电路方法的MPC,另外关于混淆电路的知识也可以参考我们之前的文章《混淆电路深入浅出》,涉及的密码原语不经意传输可以参考我们的系列文章《OT&OT扩展(不经意传输扩展)深入浅出》、《不经意传输协议(OT/OTE)的进一步补充》。

2.1 具体算法介绍

2.1.1 人脸分布式存储

由于时间关系,后续内容将在明天补充。。。

相关推荐
钱彬 (Qian Bin)2 天前
基于Django+Bootstrap+深度学习 构建商业级人脸识别系统(代码开源)
python·深度学习·django·开源·bootstrap·人脸识别·教程
goomind6 天前
卷积神经网络实战人脸检测与识别
人工智能·深度学习·神经网络·cnn·人脸识别·人脸检测
杉岩数据10 天前
数智百问 | 制造企业如何降低产线检测数据的存储和管理成本?
大数据·视觉检测·制造·分布式存储·检测数据管理·质检图片存储
佟晖13 天前
ceph 16.2.15(Pacific)编译
linux·ceph·分布式存储
我的青春不太冷16 天前
【实战篇】Android安卓本地离线实现视频检测人脸
android·数码相机·ai·人脸识别·音视频·android人脸识别
点云SLAM1 个月前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
程序媛徐师姐1 个月前
Python基于OpenCV和PyQt5的人脸识别上课签到系统【附源码】
python·opencv·人脸识别·pyqt5·人脸识别上课签到系统·上课签到·上课签到系统
chusheng18401 个月前
基于 Python 和 OpenCV 的人脸识别上课考勤管理系统
python·opencv·人脸识别·人脸识别考勤·人脸识别上课考勤·python 考勤管理
bohu831 个月前
ros2-4.2 用python实现人脸识别
人工智能·opencv·人脸识别·ros2·服务调用
Jeo_dmy1 个月前
(七)人工智能进阶之人脸识别:从刷脸支付到智能安防的奥秘,小白都可以入手的MTCNN+Arcface网络
人工智能·计算机视觉·人脸识别·猪脸识别