怎么办?用DolphinScheduler调度执行复杂的HiveSQL时无法正确识别符号

在使用Apache DolphinScheduler调度执行复杂的HiveSQL时,HQL包含多种海豚无法正确识别的符号,怎么办?本文提供了可行的思路和方法,供用户参考。

一、目的

在Hive中完成复杂JSON,既有对象还有数组而且数组中包含数组的解析后,原本以为没啥问题了,结果在DolphinScheduler中调度又出现了大问题,搞了一天。试了很多种方法,死了无数脑细胞,才解决了这个问题!

二、HiveSQL

复制代码
insert  overwrite  table  hurys_dc_dwd.dwd_json_statistics partition(day)
select
        t1.device_no,
        source_device_type,
        sn,
        model,
        create_time,
        cycle,
        get_json_object(coil_list,'$.laneNo')  lane_no,
        get_json_object(coil_list,'$.laneType')           lane_type,
        section_no,
        get_json_object(coil_list,'$.coilNo')             coil_no,
        get_json_object(coil_list,'$.volumeSum')          volume_sum,
        get_json_object(coil_list,'$.volumePerson')       volume_person,
        get_json_object(coil_list,'$.volumeCarNon')       volume_car_non,
        get_json_object(coil_list,'$.volumeCarSmall')     volume_car_small,
        get_json_object(coil_list,'$.volumeCarMiddle')    volume_car_middle,
        get_json_object(coil_list,'$.volumeCarBig')       volume_car_big,
        get_json_object(coil_list,'$.speedAvg')           speed_avg,
        get_json_object(coil_list,'$.speed85')            speed_85,
        get_json_object(coil_list,'$.timeOccupancy')      time_occupancy,
        get_json_object(coil_list,'$.averageHeadway')     average_headway,
        get_json_object(coil_list,'$.averageGap')         average_gap,
        substr(create_time,1,10) day
from (select
       get_json_object(statistics_json,'$.deviceNo')          device_no,
       get_json_object(statistics_json,'$.sourceDeviceType')  source_device_type,
       get_json_object(statistics_json,'$.sn')                sn,
       get_json_object(statistics_json,'$.model')             model,
       get_json_object(statistics_json,'$.createTime')        create_time ,
       get_json_object(statistics_json,'$.data.cycle')        cycle,
       get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,
       section_list
from hurys_dc_ods.ods_statistics
lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),
    '[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\|")) tf as section_list
    where day='2024-07-18' --  date_sub(current_date(), 1)   -- '2024-07-18' --
    ) as t1
lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,
    ':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\|")) tf1 as coil_list
    where substr(create_time,1,10) =  '2024-07-18' --date_sub(current_date(), 1)   --'2024-07-17'
;

三、原先海豚的任务调度方式

在shell脚本里添加HiveSQL语句

复制代码
#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "
use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
set hive.exec.max.dynamic.partitions=1500;


with t1 as(
select
       get_json_object(statistics_json,'$.deviceNo')          device_no,
       get_json_object(statistics_json,'$.sourceDeviceType')  source_device_type,
       get_json_object(statistics_json,'$.sn')                sn,
       get_json_object(statistics_json,'$.model')             model,
       get_json_object(statistics_json,'$.createTime')        create_time ,
       get_json_object(statistics_json,'$.data.cycle')        cycle,
       get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,
       section_list
from hurys_dc_ods.ods_statistics
lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),'[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\\\|")) tf as section_list
    where day='$yesdate'
)
insert  overwrite  table  hurys_dc_dwd.dwd_json_statistics partition(day)
select
        t1.device_no,
        source_device_type,
        sn,
        model,
        substr(create_time,1,19)                          create_time ,
        cycle,
        get_json_object(coil_list,'$.laneNo')  lane_no,
        get_json_object(coil_list,'$.laneType')           lane_type,
        section_no,
        get_json_object(coil_list,'$.coilNo')             coil_no,
        get_json_object(coil_list,'$.volumeSum')          volume_sum,
        get_json_object(coil_list,'$.volumePerson')       volume_person,
        get_json_object(coil_list,'$.volumeCarNon')       volume_car_non,
        get_json_object(coil_list,'$.volumeCarSmall')     volume_car_small,
        get_json_object(coil_list,'$.volumeCarMiddle')    volume_car_middle,
        get_json_object(coil_list,'$.volumeCarBig')       volume_car_big,
        get_json_object(coil_list,'$.speedAvg')           speed_avg,
        get_json_object(coil_list,'$.speed85')            speed_85,
        get_json_object(coil_list,'$.timeOccupancy')      time_occupancy,
        get_json_object(coil_list,'$.averageHeadway')     average_headway,
        get_json_object(coil_list,'$.averageGap')         average_gap,
        substr(create_time,1,10) day
from t1
lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\\\|")) tf1 as coil_list
    where  substr(create_time,1,10) ='$yesdate'
"

四、原先方式报错日志

DolphinScheduler无法正确识别HiveSQL里解析复杂JSON的多种符号。

五、解决方式

把HiveSQL放在一个SQL文件里,然后在脚本里是执行Hive的sourceSQL文件。

1 SQL文件

--使用hurys_dc_ods数据库 use hurys_dc_dwd;

--hive调优(必须先执行调优语句,否则部分复杂SQL运行会有问题) set hive.vectorized.execution.enabled=false; --开启动态分区功能(默认 true,开启) set hive.exec.dynamic.partition=true; --设置为非严格模式 nonstrict 模式表示允许所有的分区字段都可以使用动态分区 set hive.exec.dynamic.partition.mode=nonstrict; --在每个执行 MR 的节点上,最大可以创建多少个动态分区 set hive.exec.max.dynamic.partitions.pernode=1000; --在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。默认 1000 set hive.exec.max.dynamic.partitions=1500;

复制代码
insert  overwrite  table  hurys_dc_dwd.dwd_json_statistics partition(day)
select
        t1.device_no,
        source_device_type,
        sn,
        model,
        create_time,
        cycle,
        get_json_object(coil_list,'$.laneNo')  lane_no,
        get_json_object(coil_list,'$.laneType')           lane_type,
        section_no,
        get_json_object(coil_list,'$.coilNo')             coil_no,
        get_json_object(coil_list,'$.volumeSum')          volume_sum,
        get_json_object(coil_list,'$.volumePerson')       volume_person,
        get_json_object(coil_list,'$.volumeCarNon')       volume_car_non,
        get_json_object(coil_list,'$.volumeCarSmall')     volume_car_small,
        get_json_object(coil_list,'$.volumeCarMiddle')    volume_car_middle,
        get_json_object(coil_list,'$.volumeCarBig')       volume_car_big,
        get_json_object(coil_list,'$.speedAvg')           speed_avg,
        get_json_object(coil_list,'$.speed85')            speed_85,
        get_json_object(coil_list,'$.timeOccupancy')      time_occupancy,
        get_json_object(coil_list,'$.averageHeadway')     average_headway,
        get_json_object(coil_list,'$.averageGap')         average_gap,
        substr(create_time,1,10) day
from (select
       get_json_object(statistics_json,'$.deviceNo')          device_no,
       get_json_object(statistics_json,'$.sourceDeviceType')  source_device_type,
       get_json_object(statistics_json,'$.sn')                sn,
       get_json_object(statistics_json,'$.model')             model,
       get_json_object(statistics_json,'$.createTime')        create_time ,
       get_json_object(statistics_json,'$.data.cycle')        cycle,
       get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.sectionNo') section_no,
       section_list
from hurys_dc_ods.ods_statistics
lateral view explode(split(replace(replace(replace(get_json_object(statistics_json,'$.data.sectionList'),'[',''),']',''),'},{"sectionNo"','}|{"sectionNo"'),"\\|")) tf as section_list
    where day= date_sub(current_date(), 1)
    ) as t1
lateral view explode(split(replace(replace(replace(get_json_object(replace(replace(section_list,':{',':[{'),'}}','}]}'),'$.coilList'),'[',''),']',''),'},','}|'),"\\|")) tf1 as coil_list
where substr(create_time,1,10) =  date_sub(current_date(), 1)
;

2 海豚任务执行脚本

复制代码
#! /bin/bash
source /etc/profile

nowdate=`date --date='0 days ago' "+%Y-%m-%d"`
yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "
source   dwd_json_statistics.sql
" 

3 执行任务,验证结果

终于解决了!以后碰到类似调度器识别不了SQL里符号的问题,可以用这个方法,把SQL放在SQL文件里,然后在脚本里执行这个SQL文件,这样就能规避这类问题了。

转载自天地风雷水火山泽 原文链接:https://blog.csdn.net/tiantang2renjian/article/details/140605840

本文由 白鲸开源科技 提供发布支持!

相关推荐
TDengine (老段)5 小时前
TDengine 转化类函数 TO_CHAR 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
黄雪超6 小时前
Kafka——多线程开发消费者实例
大数据·分布式·kafka
ManageEngineITSM7 小时前
从混乱到秩序:IT服务管理如何重塑企业运营效率
大数据·人工智能·程序人生·职场和发展·itsm
青云交8 小时前
Java 大视界 -- 基于 Java 的大数据分布式存储在工业互联网数据管理与边缘计算协同中的创新实践(364)
java·大数据·边缘计算·工业互联网·分布式存储·paxos·数据协同
数据爬坡ing9 小时前
软件工程之可行性研究:从理论到实践的全面解析
大数据·流程图·软件工程·可用性测试
晴天彩虹雨10 小时前
统一调度与编排:构建自动化数据驱动平台
大数据·运维·数据仓库·自动化·big data·etl
SelectDB13 小时前
浩瀚深度:从 ClickHouse 到 Doris,支撑单表 13PB、534 万亿行的超大规模数据分析场景
大数据·数据库·apache
SelectDB13 小时前
公开免费!Apache Doris & SelectDB 培训与认证课程正式上线
大数据·数据库·apache
mykyle13 小时前
Elasticsearch-8.17.0 centos7安装
大数据·elasticsearch·jenkins
大视码垛机13 小时前
协作机器人掀起工厂革命:码垛场景如何用数据重塑制造业命脉?
大数据·数据库·人工智能