深度学习——管理模型的参数

改编自李沐老师《动手深度学习》5.2. 参数管理 --- 动手学深度学习 2.0.0 documentation (d2l.ai)

在深度学习中,一旦我们选择了模型架构并设置了超参数,我们就会进入训练阶段。训练的目标是找到能够最小化损失函数的模型参数。这些参数在训练后用于预测,有时我们也需要将它们提取出来,以便在其他环境中使用,或者保存模型以便在其他软件中执行,甚至是为了科学理解而进行检查。

参数访问

访问模型参数

在PyTorch中,我们可以通过模型的层来访问参数。每一层都有自己的参数,比如权重和偏置。我们可以通过索引来访问这些参数。

复制代码
import torch
from torch import nn

# 定义一个简单的模型
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
output = net(X)

我们可以通过索引来检查模型中特定层的参数。

复制代码
# 打印第二层(全连接层)的参数
print(net[2].state_dict())

这会显示第二层的权重和偏置,它们是模型学习的关键部分。

访问特定参数的值

我们可以进一步提取特定参数的值。这通常在我们需要对参数进行特定操作时非常有用。

复制代码
# 打印第二层的偏置参数
print(net[2].bias)
print(net[2].bias.data)

参数是复合对象,包含值、梯度和其他信息。在没有进行反向传播的情况下,参数的梯度处于初始状态。

一次性访问所有参数

当需要对所有参数执行操作时,可以一次性访问所有参数。这在处理大型模型时尤其有用。

复制代码
# 打印所有层的参数名称和形状
print(*[(name, param.shape) for name, param in net.named_parameters()])

从嵌套块收集参数

当模型由多个子模块组成时,我们可以通过类似列表索引的方式来访问这些子模块的参数。

复制代码
# 定义一个子模块
def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

# 定义一个包含多个子模块的模型
def block2():
    net = nn.Sequential()
    for i in range(4):
        net.add_module(f'block {i}', block1())
    return net

# 创建一个包含嵌套子模块的模型
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
output = rgnet(X)

# 打印模型结构
print(rgnet)

# 访问嵌套子模块的参数
print(rgnet[0][1][0].bias.data)

参数初始化

内置初始化

PyTorch提供了多种预置的初始化方法,我们可以根据需要选择。

复制代码
# 初始化所有权重为高斯随机变量,偏置为0
def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)

自定义初始化

有时,我们需要自定义初始化方法来满足特定的需求。

复制代码
# 自定义初始化方法
def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)

参数绑定

有时我们希望在多个层间共享参数。在PyTorch中,我们可以通过引用同一个层的参数来实现这一点。

复制代码
# 定义一个共享层
shared = nn.Linear(8, 8)

# 使用共享层构建模型
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
output = net(X)

# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])

# 改变一个参数,另一个也会改变
net[2].weight.data[0, 0] = 100
print(net[2].weight.data[0] == net[4].weight.data[0])

这个例子展示了如何在模型的不同层之间共享参数,以及如何通过改变一个参数来影响另一个参数。这种技术在构建复杂的神经网络时非常有用。

相关推荐
qq_4369621817 分钟前
AI数据分析的优势分析
人工智能·数据挖掘·数据分析
Vodka~28 分钟前
深度学习——数据处理脚本(基于detectron2框架)
人工智能·windows·深度学习
爱的叹息41 分钟前
关于 传感器 的详细解析,涵盖定义、分类、工作原理、常见类型、应用领域、技术挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·机器人
恶霸不委屈43 分钟前
突破精度极限!基于DeepSeek的无人机航拍图像智能校准系统技术解析
人工智能·python·无人机·deepseek
lixy5791 小时前
深度学习之自动微分
人工智能·python·深度学习
量子位1 小时前
飞猪 AI 意外出圈!邀请码被黄牛倒卖,分分钟搞定机酒预订,堪比专业定制团队
人工智能·llm·aigc
量子位1 小时前
趣丸科技贾朔:AI 音乐迎来应用元年,五年内将重构产业格局|中国 AIGC 产业峰会
人工智能·aigc
量子位1 小时前
粉笔 CTO:大模型打破教育「不可能三角」,因材施教真正成为可能|中国 AIGC 产业峰会
人工智能·aigc
神经星星1 小时前
【TVM教程】microTVM TFLite 指南
人工智能·机器学习·编程语言