YOLOv8目标检测——迁移学习

迁移学习方法

(1)预训练模型与训练模型的构建

  • 实现思路

使用yolov8x.yaml的模型配置作为教师模型,学生模型采用yolov8n.yaml。先使用较大的教师模型在数据集上面进行训练,之后再用学生模型的网络将教师模型训练成为学生模型。

  • 预训练模型参数

模型结构:268 layers

参数数量:68125494 parameters

计算性能:257.4 GFLOPs

  • 训练模型参数

模型结构:400 layers

参数数量:1336652 parameters

计算性能:13.2 GFLOPs

相关推荐
weixin_3077791321 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
要努力啊啊啊1 天前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Ailerx1 天前
YOLOv13震撼发布:超图增强引领目标检测新纪元
人工智能·yolo·目标检测
埃菲尔铁塔_CV算法1 天前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
cver1232 天前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷2 天前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
kyle~2 天前
目标检测在国防和政府的应用实例
人工智能·目标检测·计算机视觉
weixin_377634842 天前
【数据增强】精细化贴图数据增强
人工智能·目标检测·贴图
加油吧zkf2 天前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
一花·一叶3 天前
基于昇腾310B4的YOLOv8目标检测推理
yolo·目标检测·边缘计算