YOLOv8目标检测——迁移学习

迁移学习方法

(1)预训练模型与训练模型的构建

  • 实现思路

使用yolov8x.yaml的模型配置作为教师模型,学生模型采用yolov8n.yaml。先使用较大的教师模型在数据集上面进行训练,之后再用学生模型的网络将教师模型训练成为学生模型。

  • 预训练模型参数

模型结构:268 layers

参数数量:68125494 parameters

计算性能:257.4 GFLOPs

  • 训练模型参数

模型结构:400 layers

参数数量:1336652 parameters

计算性能:13.2 GFLOPs

相关推荐
Mr_Chenph3 小时前
YOLO 8 入坑(持续更新)
yolo·yolo8
AI技术控4 小时前
基于YOLOv8的机场跑道异物检测识别系统:提升航空安全的新一代解决方案(主页有源码)
yolo
知来者逆1 天前
YOLO目标检测应用——基于 YOLOv8目标检测和 SAM 零样本分割实现指定目标分割
yolo·目标检测·计算机视觉·图像分割·sam·yolov8
Eavan努力努力再努力1 天前
[目标检测]2023ICCV:DiffusionDet: Diffusion Model for Object Detection
人工智能·目标检测·计算机视觉
量子-Alex1 天前
顶刊【遥感目标检测】【TGRS】LSKF-YOLO:面向高分辨率卫星遥感影像电力塔检测的大规模选择性核特征融合网络
人工智能·yolo·目标检测
知来者逆1 天前
计算机视觉——深度学习图像处理中目标检测平均精度均值(mAP)与其他常用评估指标
图像处理·深度学习·目标检测·计算机视觉·map
ayiya_Oese1 天前
[环境配置] 2. 依赖库安装
人工智能·python·深度学习·神经网络·目标检测·机器学习·计算机视觉
James. 常德 student1 天前
CV - 目标检测
人工智能·目标检测·计算机视觉
深度学习lover2 天前
<数据集>苹果识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果识别
云卷云舒___________2 天前
✅ Ultralytics YOLO 训练(Train)时实时获取 COCO 指标(AP):2025最新配置与代码详解 (小白友好 + B站视频)
人工智能·深度学习·yolo·模型训练·ultralytics·cocoapi·cooc指标