YOLOv8目标检测——迁移学习

迁移学习方法

(1)预训练模型与训练模型的构建

  • 实现思路

使用yolov8x.yaml的模型配置作为教师模型,学生模型采用yolov8n.yaml。先使用较大的教师模型在数据集上面进行训练,之后再用学生模型的网络将教师模型训练成为学生模型。

  • 预训练模型参数

模型结构:268 layers

参数数量:68125494 parameters

计算性能:257.4 GFLOPs

  • 训练模型参数

模型结构:400 layers

参数数量:1336652 parameters

计算性能:13.2 GFLOPs

相关推荐
思通数科多模态大模型1 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
红色的山茶花1 小时前
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-block.py
笔记·深度学习·yolo
sp_fyf_20241 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
思通数科AI全行业智能NLP系统3 小时前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
非自律懒癌患者4 小时前
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
人工智能·算法·目标检测
unix2linux5 小时前
YOLO v5 Series - Image & Video Storage ( Openresty + Lua)
yolo·lua·openresty
菠菠萝宝7 小时前
【YOLOv8】安卓端部署-1-项目介绍
android·java·c++·yolo·目标检测·目标跟踪·kotlin
ZZZZ_Y_8 小时前
YOLOv5指定标签框背景颜色和标签字
yolo
Eric.Lee202111 小时前
数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall
人工智能·目标检测·计算机视觉
红色的山茶花20 小时前
YOLOv8-ultralytics-8.2.103部分代码阅读笔记-conv.py
笔记·yolo