NumPy库学习之transpose函数

NumPy库学习之transpose函数

一、简介

numpy.transpose 是 NumPy 库中的一个函数,用于对数组的轴进行置换。这个函数可以重新排列多维数组的维度,使得数组的各个维度可以按照指定的顺序进行交换。这对于某些需要特定数据布局的计算非常有用,例如在机器学习和深度学习中调整数据的形状以适应算法要求。

二、语法和参数

语法:

python 复制代码
numpy.transpose(a, axes=None)

参数:

  • a: 输入的数组。
  • axes: 一个包含轴顺序的元组,用于指定新的轴顺序。如果省略此参数,数组将被转置(即轴0和轴1互换,依此类推)。

返回值:

返回一个新的数组视图,其轴顺序已经被置换。

三、实例

3.1 基本转置
  • 代码:
python 复制代码
import numpy as np

# 创建一个 2x3 的数组
arr = np.array([[1, 2, 3], [4, 5, 6]])

# 转置数组
transposed_arr = np.transpose(arr)
  • 输出:
python 复制代码
[[1 4]
 [2 5]
 [3 6]]
3.2 指定轴顺序
  • 代码:
python 复制代码
import numpy as np

# 创建一个 2x3x4 的三维数组
arr_3d = np.array([[[ 0,  1,  2,  3],
                    [ 4,  5,  6,  7],
                    [ 8,  9, 10, 11]],

                   [[12, 13, 14, 15],
                    [16, 17, 18, 19],
                    [20, 21, 22, 23]]])

# 指定新的轴顺序,例如 (2, 1, 0)
transposed_arr_3d = np.transpose(arr_3d, (2, 1, 0))
  • 输出:
python 复制代码
[[[ 0  4  8]
  [ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]]

 [[12 16 20]
  [13 17 21]
  [14 18 22]
  [15 19 23]]]

四、注意事项

  1. numpy.transpose 不会改变原始数组的数据,而是返回一个新的数组视图。
  2. 如果 axes 参数省略,对于二维数组,它将执行常规的矩阵转置操作。
  3. 对于更高维度的数组,axes 参数允许更复杂的轴置换操作。
  4. 当指定 axes 参数时,需要确保提供的轴顺序与原始数组的维度匹配。
  5. 转置操作在内存中是高效的,因为它不涉及数据的实际移动,只是改变了数据的解释方式。
相关推荐
绵绵细雨中的乡音27 分钟前
Linux进程学习【基本认知】
linux·运维·学习
我的golang之路果然有问题2 小时前
快速了解redis,个人笔记
数据库·经验分享·redis·笔记·学习·缓存·内存
Angindem4 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
虾球xz4 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
BOB-wangbaohai4 小时前
Flowable7.x学习笔记(十四)查看部署流程Bpmn2.0-xml
xml·笔记·学习
先生沉默先4 小时前
c#接口_抽象类_多态学习
开发语言·学习·c#
豆芽8194 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
友善啊,朋友5 小时前
《普通逻辑》学习记录——性质命题及其推理
学习·逻辑学
Gsen28195 小时前
AI大模型从0到1记录学习 数据结构和算法 day20
数据结构·学习·算法·生成对抗网络·目标跟踪·语言模型·知识图谱
能来帮帮蒟蒻吗6 小时前
Docker安装(Ubuntu22版)
笔记·学习·spring cloud·docker·容器