NumPy库学习之transpose函数

NumPy库学习之transpose函数

一、简介

numpy.transpose 是 NumPy 库中的一个函数,用于对数组的轴进行置换。这个函数可以重新排列多维数组的维度,使得数组的各个维度可以按照指定的顺序进行交换。这对于某些需要特定数据布局的计算非常有用,例如在机器学习和深度学习中调整数据的形状以适应算法要求。

二、语法和参数

语法:

python 复制代码
numpy.transpose(a, axes=None)

参数:

  • a: 输入的数组。
  • axes: 一个包含轴顺序的元组,用于指定新的轴顺序。如果省略此参数,数组将被转置(即轴0和轴1互换,依此类推)。

返回值:

返回一个新的数组视图,其轴顺序已经被置换。

三、实例

3.1 基本转置
  • 代码:
python 复制代码
import numpy as np

# 创建一个 2x3 的数组
arr = np.array([[1, 2, 3], [4, 5, 6]])

# 转置数组
transposed_arr = np.transpose(arr)
  • 输出:
python 复制代码
[[1 4]
 [2 5]
 [3 6]]
3.2 指定轴顺序
  • 代码:
python 复制代码
import numpy as np

# 创建一个 2x3x4 的三维数组
arr_3d = np.array([[[ 0,  1,  2,  3],
                    [ 4,  5,  6,  7],
                    [ 8,  9, 10, 11]],

                   [[12, 13, 14, 15],
                    [16, 17, 18, 19],
                    [20, 21, 22, 23]]])

# 指定新的轴顺序,例如 (2, 1, 0)
transposed_arr_3d = np.transpose(arr_3d, (2, 1, 0))
  • 输出:
python 复制代码
[[[ 0  4  8]
  [ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]]

 [[12 16 20]
  [13 17 21]
  [14 18 22]
  [15 19 23]]]

四、注意事项

  1. numpy.transpose 不会改变原始数组的数据,而是返回一个新的数组视图。
  2. 如果 axes 参数省略,对于二维数组,它将执行常规的矩阵转置操作。
  3. 对于更高维度的数组,axes 参数允许更复杂的轴置换操作。
  4. 当指定 axes 参数时,需要确保提供的轴顺序与原始数组的维度匹配。
  5. 转置操作在内存中是高效的,因为它不涉及数据的实际移动,只是改变了数据的解释方式。
相关推荐
北岛寒沫12 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
扑火的小飞蛾12 小时前
网络安全小白学习路线图 (基于提供文档库)
学习·安全·web安全
优雅的潮叭12 小时前
c++ 学习笔记之 malloc
c++·笔记·学习
薛不痒14 小时前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
A尘埃14 小时前
Numpy常用方法介绍
numpy
昵称已被吞噬~‘(*@﹏@*)’~14 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
我想我不够好。14 小时前
学到的知识点 1.8
学习
旖旎夜光15 小时前
Linux(9)
linux·学习
浩瀚地学16 小时前
【Java】常用API(二)
java·开发语言·经验分享·笔记·学习
chao_66666616 小时前
解决 PowerShell 中文乱码问题
网络·学习·powershell