深度学习02-pytorch-01-张量的创建

深度学习 pytorch 框架 是目前最热门的。

深度学习 pytorch 框架相当于 机器学习阶段的 numpy + sklearn

它将数据封装成张量(Tensor)来进行处理,其实就是数组。也就是numpy 里面的 ndarray .

bash 复制代码
pip install torch===1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
复制代码
import torch
import numpy as np

# 1.tensor:指定数据
# 数值
print(torch.tensor(100))

# 列表:只能是数值
# data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.tensor(data))

# ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))


# 2.Tensor
# # 数值
print(torch.Tensor([100]))
#
# # 列表:只能是数值
# # data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.Tensor(data))
#
# # ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))
#
# # 形状
print(torch.Tensor(4, 5))


# 3.IntTensor
print(torch.IntTensor(2, 3))
data =np.random.randint(1,10,(2,3))
print(torch.FloatTensor(data))
  1. torch.Tensor(data) 默认类型是float 32,所以输出in t 会转成 float 32
python 复制代码
import torch

# 线性
# arange:左闭右开
print(torch.arange(0, 10, 1))

# linspcae:左闭右闭
print(torch.linspace(0, 10, 21))

# 随机数
# 设置随机数种子
torch.random.manual_seed(22)
print(torch.randn((2, 3)))
print(torch.randint(1,10,(2,3)))
# 查看随机数种子
print(torch.random.initial_seed())
python 复制代码
import torch
# 形状
print(torch.zeros((3, 3)))
print(torch.ones((3, 3)))
print(torch.full((3, 3),100))


# 指定张量数据
data = torch.randint(1,10,(3,4))
print(torch.zeros_like(data))
print(torch.ones_like(data))
print(torch.full_like(data,300))

相关推荐
噜~噜~噜~12 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理
serve the people13 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K89213 小时前
前端机器学习
人工智能·机器学习
陈天伟教授13 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_6501082414 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy101114 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里14 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
小女孩真可爱14 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
0***R51514 小时前
人工智能在金融风控中的应用
人工智能
2501_9414037614 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能