深度学习02-pytorch-01-张量的创建

深度学习 pytorch 框架 是目前最热门的。

深度学习 pytorch 框架相当于 机器学习阶段的 numpy + sklearn

它将数据封装成张量(Tensor)来进行处理,其实就是数组。也就是numpy 里面的 ndarray .

bash 复制代码
pip install torch===1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
复制代码
import torch
import numpy as np

# 1.tensor:指定数据
# 数值
print(torch.tensor(100))

# 列表:只能是数值
# data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.tensor(data))

# ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))


# 2.Tensor
# # 数值
print(torch.Tensor([100]))
#
# # 列表:只能是数值
# # data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.Tensor(data))
#
# # ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))
#
# # 形状
print(torch.Tensor(4, 5))


# 3.IntTensor
print(torch.IntTensor(2, 3))
data =np.random.randint(1,10,(2,3))
print(torch.FloatTensor(data))
  1. torch.Tensor(data) 默认类型是float 32,所以输出in t 会转成 float 32
python 复制代码
import torch

# 线性
# arange:左闭右开
print(torch.arange(0, 10, 1))

# linspcae:左闭右闭
print(torch.linspace(0, 10, 21))

# 随机数
# 设置随机数种子
torch.random.manual_seed(22)
print(torch.randn((2, 3)))
print(torch.randint(1,10,(2,3)))
# 查看随机数种子
print(torch.random.initial_seed())
python 复制代码
import torch
# 形状
print(torch.zeros((3, 3)))
print(torch.ones((3, 3)))
print(torch.full((3, 3),100))


# 指定张量数据
data = torch.randint(1,10,(3,4))
print(torch.zeros_like(data))
print(torch.ones_like(data))
print(torch.full_like(data,300))

相关推荐
三块可乐两块冰3 分钟前
【第二十六周】机器学习笔记二十五
人工智能·笔记·机器学习
一招定胜负6 分钟前
opencv图片处理常见操作
人工智能·opencv·计算机视觉
byzh_rc6 分钟前
[机器学习-从入门到入土] 特征选择
人工智能·机器学习
Hcoco_me7 分钟前
大模型面试题41:RoPE改进的核心目标与常见方法
开发语言·人工智能·深度学习·自然语言处理·transformer·word2vec
Toky丶8 分钟前
【文献阅读】Half-Quadratic Quantization of Large Machine Learning Models
人工智能·机器学习
海棠AI实验室9 分钟前
海光DCU部署全攻略:开箱、配置到AI训练的最佳实践|2026工程化版本
人工智能·dcu·海光
LDG_AGI10 分钟前
【推荐系统】深度学习训练框架(二十三):TorchRec端到端超大规模模型分布式训练+推理实战
人工智能·分布式·深度学习·机器学习·数据挖掘·推荐算法
沛沛老爹13 分钟前
Web开发者快速上手AI Agent:基于Function Calling的提示词应用优化实战
java·人工智能·llm·agent·web·企业开发·function
张彦峰ZYF14 分钟前
提示词工程(Prompt Engineering):核心技巧进阶与工程化流程
人工智能·prompt·提示词工程·用清晰明确的话语表达任务意图·在可能情况下用示例去阐明输出·根据任务类型灵活选择提示策略·提示设计视作迭代工程非单次输入
AI浩15 分钟前
ARConv:用于遥感全色锐化的自适应矩形卷积
人工智能·目标跟踪