深度学习02-pytorch-01-张量的创建

深度学习 pytorch 框架 是目前最热门的。

深度学习 pytorch 框架相当于 机器学习阶段的 numpy + sklearn

它将数据封装成张量(Tensor)来进行处理,其实就是数组。也就是numpy 里面的 ndarray .

bash 复制代码
pip install torch===1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
复制代码
import torch
import numpy as np

# 1.tensor:指定数据
# 数值
print(torch.tensor(100))

# 列表:只能是数值
# data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.tensor(data))

# ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))


# 2.Tensor
# # 数值
print(torch.Tensor([100]))
#
# # 列表:只能是数值
# # data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.Tensor(data))
#
# # ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))
#
# # 形状
print(torch.Tensor(4, 5))


# 3.IntTensor
print(torch.IntTensor(2, 3))
data =np.random.randint(1,10,(2,3))
print(torch.FloatTensor(data))
  1. torch.Tensor(data) 默认类型是float 32,所以输出in t 会转成 float 32
python 复制代码
import torch

# 线性
# arange:左闭右开
print(torch.arange(0, 10, 1))

# linspcae:左闭右闭
print(torch.linspace(0, 10, 21))

# 随机数
# 设置随机数种子
torch.random.manual_seed(22)
print(torch.randn((2, 3)))
print(torch.randint(1,10,(2,3)))
# 查看随机数种子
print(torch.random.initial_seed())
python 复制代码
import torch
# 形状
print(torch.zeros((3, 3)))
print(torch.ones((3, 3)))
print(torch.full((3, 3),100))


# 指定张量数据
data = torch.randint(1,10,(3,4))
print(torch.zeros_like(data))
print(torch.ones_like(data))
print(torch.full_like(data,300))

相关推荐
后端小肥肠8 分钟前
躺赚必备!RPA+Coze+豆包:公众号自动发文,AI率0%亲测有效(附AI率0%提示词)
人工智能·aigc·coze
摘星编程20 分钟前
CloudBase AI ToolKit实战:从0到1开发一个智能医疗网站
人工智能·腾讯云·ai代码远征季#h5应用·ai医疗应用·cloudbase开发
锅挤25 分钟前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
一支烟一朵花29 分钟前
630,百度文心大模型4.5系列开源!真香
人工智能·百度·开源·文心一言
网安INF31 分钟前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
喜欢吃豆35 分钟前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型
AIbase20241 小时前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
喜欢吃豆2 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion2 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径