深度学习02-pytorch-01-张量的创建

深度学习 pytorch 框架 是目前最热门的。

深度学习 pytorch 框架相当于 机器学习阶段的 numpy + sklearn

它将数据封装成张量(Tensor)来进行处理,其实就是数组。也就是numpy 里面的 ndarray .

bash 复制代码
pip install torch===1.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
复制代码
import torch
import numpy as np

# 1.tensor:指定数据
# 数值
print(torch.tensor(100))

# 列表:只能是数值
# data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.tensor(data))

# ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))


# 2.Tensor
# # 数值
print(torch.Tensor([100]))
#
# # 列表:只能是数值
# # data =[[2,'int',4],[4,5,6]]
data =[[2,3,4],[4,5,6]]
print(torch.Tensor(data))
#
# # ndarray
data =np.random.randint(1,10,(2,3))
print(data)
print(torch.tensor(data))
#
# # 形状
print(torch.Tensor(4, 5))


# 3.IntTensor
print(torch.IntTensor(2, 3))
data =np.random.randint(1,10,(2,3))
print(torch.FloatTensor(data))
  1. torch.Tensor(data) 默认类型是float 32,所以输出in t 会转成 float 32
python 复制代码
import torch

# 线性
# arange:左闭右开
print(torch.arange(0, 10, 1))

# linspcae:左闭右闭
print(torch.linspace(0, 10, 21))

# 随机数
# 设置随机数种子
torch.random.manual_seed(22)
print(torch.randn((2, 3)))
print(torch.randint(1,10,(2,3)))
# 查看随机数种子
print(torch.random.initial_seed())
python 复制代码
import torch
# 形状
print(torch.zeros((3, 3)))
print(torch.ones((3, 3)))
print(torch.full((3, 3),100))


# 指定张量数据
data = torch.randint(1,10,(3,4))
print(torch.zeros_like(data))
print(torch.ones_like(data))
print(torch.full_like(data,300))

相关推荐
sali-tec1 小时前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家1 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客2 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤2 小时前
机器学习第二阶段
人工智能·机器学习
用什么都重名2 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏3 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时4 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.8244 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub5 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI5 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习