spark的stage划分的原理

在 Apache Spark 中,stage 是执行作业时的重要执行单元。一个 Spark 作业会被划分为若干个 stage,每个 stage 由一组可以并行执行的任务组成。这种划分主要依赖于 RDD 中的操作类型(窄依赖和宽依赖)。下面我们来讨论 Spark stage 的创建和划分的原理以及代码实现的核心逻辑。

Spark Stage 划分的原理

  1. RDD 依赖(窄依赖和宽依赖)

    • Spark 中,RDD 可以有两种依赖关系:
      • 窄依赖 (narrow dependency):父 RDD 的每个分区至多被子 RDD 的一个分区使用,典型的操作如 mapfilter 等。
      • 宽依赖 (wide dependency):父 RDD 的每个分区可能被多个子 RDD 的分区使用,典型的操作如 reduceByKeygroupByKey 等,这类操作会触发 shuffle
    • 窄依赖的 RDD 操作可以被划分到同一个 stage 中,而宽依赖的 RDD 操作会触发 shuffle,导致 stage 划分。
  2. DAG(有向无环图)

    Spark 的作业会构建一个 RDD 的依赖图(DAG)。这个 DAG 中每个 RDD 的窄依赖操作会被合并成一个 stage,宽依赖操作会划分出不同的 stage,并在两个 stage 之间插入 shuffle

  3. Stage 划分规则

    • 每当遇到一个宽依赖(如 reduceByKeyjoingroupByKey 等),Spark 会创建一个新的 stage,并将之前的 RDD 操作划分到一个 stage 中,形成一个有序的 stage 执行链。
    • stage 划分的核心任务是:将窄依赖操作尽可能合并到一起,直到遇到需要 shuffle 的宽依赖操作。

Spark Stage 划分的核心代码逻辑

Spark 的 DAG 划分及 stage 划分主要在 DAGScheduler 中实现。DAGScheduler 是 Spark 作业调度的核心组件,负责将逻辑作业(job)划分为多个 stage,并调度这些 stage 执行。

以下是 Spark 3.x 版本中有关 stage 划分的核心逻辑及其简化代码片段。

1. DAGScheduler 类

DAGScheduler 类位于 org.apache.spark.scheduler 包下,它负责管理 RDD 依赖关系并创建 stageDAGScheduler 会根据 RDD 的依赖图和操作类型,生成任务的 DAG 并划分 stage

Scala 复制代码
class DAGScheduler(
    // 参数略...
) extends Logging {

  // stage 列表
  private val stages = new HashMap[StageId, Stage]()

  // 提交 Job 时触发的函数
  def submitJob(
      rdd: RDD[_],
      func: (TaskContext, Iterator[_]) => _,
      partitions: Seq[Int],
      callSite: CallSite,
      allowLocal: Boolean,
      resultHandler: (Int, _) => Unit,
      properties: Properties = null): JobWaiter[_] = {

    // 根据 RDD 和依赖关系生成最终的 ResultStage
    val finalStage = createFinalStage(rdd, partitions, callSite)

    // 提交该 stage 执行
    submitStage(finalStage)
  }

  // 创建 ResultStage 和后续的 Stage
  private def createFinalStage(
      rdd: RDD[_],
      partitions: Seq[Int],
      callSite: CallSite): ResultStage = {
    // 创建该作业的最终的 stage,并递归创建所有依赖的 stage
    val finalStage = newStage(rdd, partitions)
    finalStage
  }

  // 递归生成各个 Stage,核心逻辑
  private def newStage(rdd: RDD[_], partitions: Seq[Int]): Stage = {
    // 检查缓存,避免重复生成 Stage
    stages.getOrElseUpdate(rdd.id, {
      val shuffleDeps = getShuffleDependencies(rdd)

      // 如果存在宽依赖,则要划分为不同的 stage
      if (shuffleDeps.nonEmpty) {
        val parentStages = shuffleDeps.map { dep =>
          newStage(dep.rdd, dep.rdd.partitions.indices)
        }
        val newStage = new ShuffleMapStage(rdd, parentStages)
        stages(newStage.id) = newStage
        newStage
      } else {
        // 如果只有窄依赖,当前操作在同一个 stage 内
        val parentStages = getNarrowDependencies(rdd).map { dep =>
          newStage(dep.rdd, dep.rdd.partitions.indices)
        }
        val newStage = new ResultStage(rdd, parentStages)
        stages(newStage.id) = newStage
        newStage
      }
    })
  }

  // 获取 RDD 的 shuffle 依赖(宽依赖)
  private def getShuffleDependencies(rdd: RDD[_]): List[ShuffleDependency[_, _, _]] = {
    rdd.dependencies.collect {
      case shuffleDep: ShuffleDependency[_, _, _] => shuffleDep
    }
  }

  // 获取 RDD 的窄依赖
  private def getNarrowDependencies(rdd: RDD[_]): List[Dependency[_]] = {
    rdd.dependencies.collect {
      case narrowDep: NarrowDependency[_] => narrowDep
    }
  }
}
2. Stage 划分的基本过程
  • RDD 依赖遍历 :通过 newStage 函数递归遍历 RDD 的依赖关系,将遇到的每一个 shuffle 依赖(宽依赖)创建一个新的 ShuffleMapStage,而 ResultStage 则用于最终计算结果。

  • 宽依赖处理 :当遇到宽依赖(ShuffleDependency),说明需要进行 shuffle,因此要创建一个新的 stage

  • 窄依赖处理 :当只有窄依赖时,RDD 可以继续合并在当前的 stage 中。

3. ShuffleMapStage 和 ResultStage

ShuffleMapStageResultStage 是 Spark 中两种类型的 Stage

  • ShuffleMapStage :处理宽依赖(shuffle),该 stage 会产生 shuffle 文件供下游 stage 使用。
  • ResultStage :最终计算 Action(如 collectsaveAsTextFile 等)结果的 stage,是 DAG 中的最后一个 stage

代码流程总结

  1. DAGScheduler 在收到作业时,会从最后的 Action 开始,通过递归函数 newStage,根据 RDD 的依赖关系逐步向上遍历。
  2. 当遇到 shuffle 依赖时,会将其划分为不同的 stage,每个 shuffle 依赖会产生一个 ShuffleMapStage
  3. 所有的窄依赖 RDD 操作则合并为一个 stage,在同一个 stage 中执行。
  4. submitStage 负责将划分好的 stage 发送给 TaskScheduler,TaskScheduler 则进一步调度任务到集群执行。

总结

  • 窄依赖操作 :操作在同一个 stage 中执行,尽可能合并,减少 shuffle
  • 宽依赖操作 :每个宽依赖会触发新的 stage,并引入 shuffle,每个 shuffle 会将数据重新分布给后续的 stage
  • DAGScheduler 的作用 :DAG 调度器负责将 RDD 操作链划分为多个 stage,并根据依赖关系生成一个 DAG。
相关推荐
渡我白衣几秒前
计算机组成原理(14):算术逻辑单元ALU
大数据·人工智能·算法·机器学习·计组·数电·alu
韶关亿宏科技-光纤通信小易23 分钟前
光模块-数字时代的算力传输纽带
大数据·网络
武子康35 分钟前
大数据-208 岭回归与Lasso回归:区别、应用与选择指南
大数据·后端·机器学习
飞飞传输38 分钟前
适配信创环境的传输系统推荐:助力企业数据安全合规传输!
大数据·运维·安全
qq_124987075339 分钟前
基于springboot归家租房小程序的设计与实现(源码+论文+部署+安装)
java·大数据·spring boot·后端·小程序·毕业设计·计算机毕业设计
Data_agent42 分钟前
Pantherbuy模式淘宝 / 1688 代购系统(欧美市场)搭建指南
大数据·python·产品经理
Suahi43 分钟前
【HuggingFace LLM】规范化与预分词(BPE、WordPiece以及Unigram)
大数据·人工智能
大厂技术总监下海1 小时前
从Hadoop MapReduce到Apache Spark:一场由“磁盘”到“内存”的速度与范式革命
大数据·hadoop·spark·开源
元智启1 小时前
企业 AI 应用进入 “能力解耦时代”:模块化重构 AI 落地新范式
大数据·人工智能·重构
小真zzz1 小时前
【2026新体验】ChatPPT的AI智能路演评测:PPT总结和问答都变的易如反掌
大数据·人工智能·ai·powerpoint·ppt·chatppt