迭代器模式
提供一种方法顺序访问一个聚合对象中的各种元素,而又不暴露其内部的表示。
模型说明
-
Iterator: 接口声明了遍历集合所需的操作: 获取下一个元素、 获取当前位置和重新开始迭代等。
-
IterableCollection: 接口声明一个或多个方法来获取与集合兼容的迭代器。 请注意, 返回方法的类型必须被声明为迭代器接口, 因此具体集合可以返回各种不同种类的迭代器。
-
ConcreteIterator: 实现遍历集合的一种特定算法。 迭代器对象必须跟踪自身遍历的进度。 这使得多个迭代器可以相互独立地遍历同一集合。
-
ConcreteCollection: 会在客户端请求迭代器时返回一个特定的具体迭代器类实体。 你可能会琢磨, 剩下的集合代码在什么地方呢? 不用担心, 它也会在同一个类中。 只是这些细节对于实际模式来说并不重要, 所以我们将其省略了而已。
-
Client: 通过集合和迭代器的接口与两者进行交互。 这样一来客户端无需与具体类进行耦合, 允许同一客户端代码使用各种不同的集合和迭代器。
-
客户端通常不会自行创建迭代器, 而是会从集合中获取。 但在特定情况下, 客户端可以直接创建一个迭代器 (例如当客户端需要自定义特殊迭代器时)。
优缺点
1.优点
- *单一职责原则:*通过将体积庞大的遍历算法代码抽取为独立的类, 你可对客户端代码和集合进行整理。
- *开闭原则:*你可实现新型的集合和迭代器并将其传递给现有代码, 无需修改现有代码。
- 你可以并行遍历同一集合, 因为每个迭代器对象都包含其自身的遍历状态。
- 相似的, 你可以暂停遍历并在需要时继续。
2.缺点
- 如果你的程序只与简单的集合进行交互, 应用该模式可能会矫枉过正。
- 对于某些特殊集合, 使用迭代器可能比直接遍历的效率低。
使用场景
- 当集合背后为复杂的数据结构, 且你希望对客户端隐藏其复杂性时 (出于使用便利性或安全性的考虑),可以使用迭代器模式。
- 使用该模式可以减少程序中重复的遍历代码。
- 如果你希望代码能够遍历不同的甚至是无法预知的数据结构,可以使用迭代器模式。
参考代码
go
// iterator.go 迭代器接口
type Iterator interface {
hasNext() bool
getNext() *User
}
go
// userIterator.go 具体迭代器
type UserIterator struct {
index int
users []*User
}
func (u *UserIterator) hasNext() bool {
if u.index < len(u.users) {
return true
}
return false
}
func (u *UserIterator) getNext() *User {
if u.hasNext() {
user := u.users[u.index]
u.index++
return user
}
return nil
}
go
// collection.go 集合接口
type Collection interface {
createIterator() Iterator
}
go
// userCollection.go 具体集合
type User struct {
name string
age int
}
type UserCollection struct {
users []*User
}
func (u *UserCollection) createIterator() Iterator {
return &UserIterator{
users: u.users,
}
}
go
// main.go 客户端
func main() {
user1 := &User{
name: "a",
age: 30,
}
user2 := &User{
name: "b",
age: 20,
}
userCollection := &UserCollection{
users: []*User{user1, user2},
}
iterator := userCollection.createIterator()
for iterator.hasNext() {
user := iterator.getNext()
fmt.Printf("User is %+v\n", user)
}
}
output:
go
User is &{name:a age:30}
User is &{name:b age:20}