【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
youcans_10 小时前
【医学影像 AI】FunBench:评估多模态大语言模型的眼底影像解读能力
论文阅读·人工智能·大语言模型·多模态·眼底图像
Cuby!13 小时前
【AFDM与信号处理:论文阅读】仿射频分复用:扩展OFDM以实现场景灵活性和弹性
论文阅读·笔记·学习·信息与通信·信号处理
m0_6501082418 小时前
DETR3D:基于 3D-to-2D 查询的多视图 3D 目标检测框架
论文阅读·自动驾驶·3d目标检测·rgb 多视角图像·无预测深度图依赖·detr3d
m0_6501082420 小时前
UniAD:面向规划的端到端自动驾驶统一框架
论文阅读·自动驾驶·uniad·ad全栈统一框架·端到端闭环·目标导向的任务协同·视觉单模态
CV-杨帆2 天前
论文阅读:arxiv 2025 DeepSeek-R1 Thoughtology: Let‘s think about LLM Reasoning
论文阅读
QFIUNE2 天前
【文献阅读】DP-Site:一种基于双重深度学习的蛋白质-肽相互作用位点预测方法
论文阅读
Ma0407132 天前
【论文阅读24】-利用大型语言模型进行免训练的视频异常检测
论文阅读·语言模型·blip-2·q-former
程途拾光1582 天前
企业组织架构图导出Word 在线编辑免费工具
大数据·论文阅读·人工智能·信息可视化·架构·word·流程图
m0_650108242 天前
CPDet3D:面向室内外统一的稀疏监督 3D 目标检测新范式
论文阅读·3d目标检测·稀疏监督·室内外统一检测·cpdet3d
m0_650108243 天前
Vision-Language-Action 模型在自动驾驶中的应用(VLA4AD)
论文阅读·人工智能·自动驾驶·端到端自动驾驶·vla4ad·自动驾驶与多模态大模型交叉