【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
胆怯的ai萌新1 小时前
论文阅读《Proximal Curriculum for Reinforcement Learning Agents》——提升智能体学习速度的
论文阅读
墨绿色的摆渡人1 天前
论文笔记(七十四)Dense Policy: Bidirectional Autoregressive Learning of Actions
论文阅读
s1ckrain1 天前
【论文阅读】VideoMerge: Towards Training-free Long Video Generation
论文阅读·人工智能·计算机视觉
Ayakanoinu1 天前
【论文阅读】Dynamic Adversarial Patch for Evading Object Detection Models
论文阅读·目标检测·目标跟踪
寻丶幽风1 天前
论文阅读笔记——ReconDreamer
论文阅读·笔记·自动驾驶·3dgs·世界模型·闭环仿真
金科铁码1 天前
提示词工程 — 科研论文笔记
论文阅读
0x2111 天前
[论文阅读]Attacking Open-domain Question Answering by Injecting Misinformation
论文阅读
黄雪超2 天前
Flink介绍——实时计算核心论文之S4论文详解
大数据·论文阅读·flink
Matrix_112 天前
论文阅读:GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring
论文阅读·人工智能·计算摄影
s1ckrain2 天前
【论文阅读】LongDiff:Training-Free Long Video Generation in One Go
论文阅读·人工智能·计算机视觉