【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
selia10784 小时前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读
寻丶幽风6 小时前
论文阅读笔记——NoPoSplat
论文阅读·笔记·三维重建·3dgs·相机位姿·dustr
寻丶幽风12 小时前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
张较瘦_14 小时前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
非英杰不图15 小时前
论文阅读:Align and Prompt (ALPRO 2021.12)
论文阅读·prompt
qq_4162764216 小时前
当SAM遇到声纳图像时之论文阅读
论文阅读
王上上16 小时前
【论文阅读38】-结合应力预测位移
论文阅读
张较瘦_11 天前
[论文阅读] 软件工程 + 教学 | 软件工程项目管理课程改革:从传统教学到以学生为中心的混合式学习实践
论文阅读·学习·软件工程
ZHANG8023ZHEN11 天前
GameFormer论文阅读
论文阅读