【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
七夜星七夜月2 天前
时间序列预测论文阅读和相关代码库
论文阅读·python·深度学习
WenBoo-2 天前
HIPT论文阅读
论文阅读
chnyi6_ya2 天前
论文笔记:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
论文阅读·人工智能·语言模型
Jude_lennon3 天前
【论文笔记】结合:“integrate“ 和 “combine“等
论文阅读
LuH11243 天前
【论文阅读笔记】HunyuanVideo: A Systematic Framework For Large Video Generative Models
论文阅读·笔记
lalahappy3 天前
Swin transformer 论文阅读记录 & 代码分析
论文阅读·深度学习·transformer
开心星人3 天前
【论文阅读】Trigger Hunting with a Topological Prior for Trojan Detection
论文阅读
图学习的小张3 天前
论文笔记:是什么让多模态学习变得困难?
论文阅读·神经网络·机器学习
Maker~3 天前
28、论文阅读:基于像素分布重映射和多先验Retinex变分模型的水下图像增强
论文阅读·深度学习
小嗷犬4 天前
【论文笔记】CLIP-guided Prototype Modulating for Few-shot Action Recognition
论文阅读·人工智能·深度学习·神经网络·多模态