【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
m0_6501082439 分钟前
Vision-Language-Action 模型在自动驾驶中的应用(VLA4AD)
论文阅读·人工智能·自动驾驶·端到端自动驾驶·vla4ad·自动驾驶与多模态大模型交叉
m0_650108245 小时前
DETR:基于 Transformer 的端到端目标检测
论文阅读·深度学习·目标检测·transformer·全局建模 + 直接集合预测”·betr
m0_650108245 小时前
Sketchy-3DIS:草图边界框监督下的弱监督 3D 实例分割
论文阅读·3d 实例分割·草图边界框弱监督·sketchy-3dis·室外自动驾驶
DuHz1 天前
车对车对向交汇场景的毫米波路径损耗建模论文精读
论文阅读·算法·汽车·信息与通信·信号处理
ʜᴇɴʀʏ1 天前
论文阅读 SAM 3: Segment Anything with Concepts
论文阅读·人工智能·目标检测·计算机视觉·目标跟踪
依夏c1 天前
[论文笔记•(智能体)]ChatDoctor: A Medical Chat Model Fine-Tuned ona Large Language Model Meta-AI (LLaMA) Usi
论文阅读·论文笔记
c0d1ng1 天前
十二月第二周周报(论文阅读)
论文阅读
DuHz1 天前
汽车FMCW雷达互扰下的快速目标检测:谱峰累积法与泊松CFAR精读与推导
论文阅读·算法·目标检测·汽车·信息与通信·信号处理
芥末章宇1 天前
TimeGAN论文精读
论文阅读·人工智能·论文笔记