【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
YMWM_21 小时前
论文阅读“DM0: An Embodied-Native Vision-Language-Action Model towards Physical AI“
论文阅读·人工智能·vla
xutSwIpZotzM2 天前
MATLAB 风力发电系统低电压穿越之串电阻策略探究
论文阅读
zenpluck3 天前
GS论文阅读--AGS
论文阅读
zenpluck3 天前
RTAB-Map学习记录(1)--论文阅读
c++·论文阅读·学习·机器人
DuHz3 天前
汽车雷达高级信号处理和建模技术简介——文章精读(上)
linux·论文阅读·人工智能·汽车·信号处理
YMWM_3 天前
论文阅读“OpenVLA: An Open-Source Vision-Language-Action Model“
论文阅读·vla
pzx_0014 天前
【论文阅读】Attention Is All You Need
论文阅读·算法
zenpluck4 天前
GS-SLAM论文阅读--HI-SLAM2
论文阅读
有Li5 天前
解剖学引导的全身PET-CT乳腺癌分割与跨模态自对齐/文献速递-基于深度学习的图像配准与疾病诊断
论文阅读·人工智能·深度学习·文献·医学生
s1ckrain5 天前
【论文阅读】Towards Learning a Generalist Model for Embodied Navigation
论文阅读·多模态·具身智能