【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
STLearner8 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
youcans_13 小时前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
m0_6501082415 小时前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
胆怯的ai萌新18 小时前
论文阅读《Audit Games with Multiple Defender Resources》
论文阅读
墨绿色的摆渡人19 小时前
论文笔记(一百零六)RynnVLA-002: A Unified Vision-Language-Action and World Model
论文阅读
提娜米苏19 小时前
[论文笔记] ASR is all you need: Cross-modal distillation for lip reading (2020)
论文阅读·深度学习·计算机视觉·语音识别·知识蒸馏·唇语识别
小殊小殊20 小时前
重磅!DeepSeek发布V3.2系列模型!
论文阅读·人工智能·算法
youcans_1 天前
【youcans论文精读】U-Net:用于医学图像分割的 U型卷积神经网络
论文阅读·人工智能·计算机视觉·图像分割·unet
youcans_1 天前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
DuHz1 天前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算