【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
wbzuo4 小时前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
想成为PhD的小提琴手18 小时前
论文阅读13——基于大语言模型和视觉模态融合的可解释端到端自动驾驶框架:DriveLLM-V的设计与应用
论文阅读·语言模型·自动驾驶
想看雪的瓜1 天前
Origin将2D普通的XPS曲线图升级为三维XPS瀑布图
论文阅读·论文笔记
DuHz2 天前
基于信号分解的FMCW雷达相互干扰抑制——论文阅读
论文阅读·算法·汽车·信息与通信·毫米波雷达
m0_650108242 天前
MiniGPT-4:解锁 LLM 驱动的高级视觉语言能力
论文阅读·开源·视觉语言大模型·minigpt-4·跨模态对齐·强llm+视觉对齐
WSKH09293 天前
【论文阅读】(2016)Dual Inequalities for Stabilized Column Generation Revisited
论文阅读·线性规划·运筹学·列生成·对偶不等式·稳定列生成
程途拾光1583 天前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记
蓝海星梦3 天前
【论文笔记】R-HORIZON:重塑长周期推理评估与训练范式
论文阅读·人工智能·深度学习·自然语言处理·大型推理模型
张较瘦_3 天前
[论文阅读] 软件工程 | 解决Java项目痛点:DepUpdater如何平衡依赖升级的“快”与“稳”
java·开发语言·论文阅读
0x2113 天前
[论文阅读]Friend or Foe: How LLMs‘ Safety Mind Gets Fooled by Intent Shift Attack
论文阅读