【论文阅读】FedABC: Targeting Fair Competition in Personalized Federated Learning

论文链接(AAAI2023)

文章解决的问题主要是NO-IID问题。

文章的方法包括几个关键的技术和策略,具体如下:

  • 二元分类框架:

    FedABC利用二元分类的训练策略来解决每个类别的个性化问题。这意味着对于每个类别都训练一个独立的二元分类器,从而使得每个类别都能得到足够的关注,即使是那些样本较少的类别。

  • 欠采样和硬采样策略:

    为了处理数据中的类别不平衡问题,FedABC采用了欠采样技术,这可以帮助模型减少对多数类的过分关注,从而提高对少数类的分类性能。

    硬采样(hard sample mining)策略被用来进一步提升模型对于难以分类样本的关注,这有助于模型在处理难题时获得更好的性能。

  • 个性化学习策略:

    文章强调了在极端非独立同分布(Non-IID)情况下,通过个性化模型来适应每个客户端的数据分布,这种策略可以显著提高模型在本地客户端数据上的表现。

主要就是提出了二元分类策略,将多分类变成n个二分类任务,每个二分类任务将本类别内的样本作为正样本,其他所有的类别作为负样本,这样能显著减少NOIID的影响。当然缺点应该是需要同时训练n个模型,计算的代价变高了。

相关推荐
有Li1 天前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
AustinCyy2 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290692 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
不解风水4 天前
【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
论文阅读·人机交互
爱补鱼的猫猫4 天前
17、CryptoMamba论文笔记
论文阅读
大熊背4 天前
《Fast Automatic White Balancing Method by Color Histogram Stretching》论文笔记
论文阅读·白平衡
CV-杨帆5 天前
论文阅读 arxiv 2024 MemGPT: Towards LLMs as Operating Systems
论文阅读
AAA锅包肉批发5 天前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru
星夜Zn6 天前
Nature论文-预测和捕捉人类认知的基础模型-用大模型模拟人类认知
论文阅读·人工智能·大语言模型·nature·认知建模·统一认知模型
dundunmm6 天前
【论文阅读】Deep Adversarial Multi-view Clustering Network
论文阅读·人工智能·深度学习·聚类·对抗网络·多视图聚类·深度多视图聚类