基于milvus数据库的RAG-Demo

1.上传文本并将文本向量化

python 复制代码
import os
from django.conf import settings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import DashScopeEmbeddings
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader

from pymilvus import MilvusClient, DataType


def get_embedding(text):
    file_path = os.path.join(settings.BASE_DIR, 'media', text)
    loader = ''
    # 判断文件类型
    if file_path.endswith('.txt'):
        loader = TextLoader(file_path, encoding='utf-8')

    elif file_path.endswith('.pdf'):
        loader = PyPDFLoader(file_path)

    elif file_path.endswith('.docx'):
        loader = Docx2txtLoader(file_path)

    elif file_path.endswith('.doc'):
        loader = Docx2txtLoader(file_path)

    elif file_path.endswith('.md'):
        loader = TextLoader(file_path)

    docs = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=50)
    chunks = text_splitter.split_documents(docs)

    # embeddings = DashScopeEmbeddings(model='text-embedding-v1')
    # db = Chroma.from_documents(chunks, embeddings, persist_directory='./chroma_db')
    # db.persist()
    client = MilvusClient(uri="http://127.0.0.1:19530")
    schema = MilvusClient.create_schema(
        auto_id=True,
        enable_dynamic_field=True,
    )
    schema.add_field(field_name="f_id", datatype=DataType.INT64, is_primary=True)
    schema.add_field(field_name="f_vector", datatype=DataType.FLOAT_VECTOR, dim=1536)
    schema.add_field(field_name="f_content", datatype=DataType.VARCHAR, max_length=5000)

    # 准备索引参数对象,用于定义集合中的字段索引
    index_params = client.prepare_index_params()

    # 为字段f_id添加索引,索引类型为STL_SORT
    index_params.add_index(
        field_name="f_id",
        index_type="STL_SORT"
    )

    # 为字段f_vector添加索引,索引类型为IVF_FLAT,距离度量类型为IP,并设置nlist参数
    index_params.add_index(
        field_name="f_vector",
        index_type="IVF_FLAT",
        metric_type="IP",
        params={"nlist": 128}
    )

    # 创建集合t_file,指定其schema,并设置索引参数
    client.create_collection(
        collection_name="app02_file",
        schema=schema,
        index_params=index_params
    )
    chunk_list = list(map(lambda x: x.page_content, chunks))
    embedding = DashScopeEmbeddings()
    chunk_embeds = embedding.embed_documents(chunk_list)
    data = []

    for i in range(len(chunk_embeds)):
        data_row = {"f_vector": chunk_embeds[i], "f_content": chunk_list[i]}
        data.append(data_row)

    print(data)
    client.insert(
        collection_name="app02_file",
        data=data
    )
    return docs

2.将问题向量化并搜索,拼接prompt,使用Agent(代理)

python 复制代码
from langchain.agents import tool
from langchain.agents import load_tools
from langchain.agents import AgentType
from langchain.agents import initialize_agent
class testView(APIView):
    def get(self, request):
        query = request.query_params.get('query', None)
        llm = Tongyi()

        @tool('t1')
        def t1(query: str):
            """当你需要查询数据库时才会使用这个工具"""
            client = MilvusClient(uri="http://127.0.0.1:19530", db_name="default")
            embedding = DashScopeEmbeddings(model="text-embedding-v1")
            question = embedding.embed_query(query)
            ret = client.search(
                collection_name='app02_file',
                data=[question],
                limit=3,  # Max. number of search results to return
                output_fields=["f_content"]
            )
            promptTemplate = PromptTemplate.from_template(
                "请根据下面内容总结回答\n{text}\n问题:{question}"
            )
            text = ""
            for content in ret[0]:
                text = text + content["entity"]["f_content"]

            prompt = promptTemplate.format(text=text, question=query)

            print(prompt)
            return prompt

        tools = [t1]
        agent = initialize_agent(
            tools,
            llm,
            agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
            verbose=True,
        )
        ret = agent.run(query)
        return Response({'response': ret})
相关推荐
高垚淼2 小时前
如何构建智能应用:深入探索Langchain的强大功能与应用潜力
人工智能·python·langchain
AI-入门8 小时前
AI大模型:是走向新的巅峰还是陷入发展的僵局?
数据库·人工智能·缓存·langchain·prompt·agi
weijie.zwj20 小时前
11. LCEL:LangChain Expression Language
人工智能·langchain
weijie.zwj1 天前
9. LangChain流式输出
人工智能·python·langchain
花千树-0102 天前
LangChain教程 - 基于SQL数据的问答系统教程
sql·langchain·aigc·ai编程
张3蜂2 天前
LangChain:构建复杂 NLP 应用的框架
人工智能·自然语言处理·langchain
GuokLiu2 天前
240922-chromadb的基本使用
langchain·pdf·rag·ollama
花千树-0103 天前
Milvus - 从数据库到 Partition Key 实现多租户
数据库·milvus
ZHOU西口3 天前
ChromaDB教程_2024最新版(下)
python·langchain·大模型·embedding·transformers·chroma·all-minilm-l6