逻辑回归 和 支持向量机(SVM)比较

为了更好地理解为什么在二分类问题中使用 SVM,逻辑回归的区别,我们需要深入了解这两种算法的区别、优势、劣势,以及它们适用于不同场景的原因。

逻辑回归和 SVM 的比较

1. 模型的核心思想

逻辑回归

基于概率的模型 :逻辑回归是一种概率模型,它预测的是样本属于某个类别的 概率值 。其假设函数是通过 Sigmoid 函数 将输入映射到 0 到 1 之间的概率。最后通过设定一个阈值(通常为 0.5),来决定样本属于哪个类别。

线性决策边界:逻辑回归假设类别可以通过一个线性决策边界分开。例如在二维空间中,逻辑回归找到的是一条直线,在更高维空间中则是一条超平面。

SVM

基于最大间隔的模型 :SVM 并不是像逻辑回归那样输出概率,而是直接找到 分隔不同类别的超平面 ,并且保证该超平面与最近的样本(支持向量)之间的距离 最大化 ,从而增强模型的 泛化能力

最大间隔决策边界:SVM 选择的决策边界不仅要正确地分类样本,还要保证分隔两类样本的间隔尽可能大。这样可以让模型在面对新的样本时具有更好的稳定性和鲁棒性。

2. 损失函数与优化目标

逻辑回归:

• 逻辑回归使用的是 对数似然损失(Log-Loss) 。其目标是通过最小化这个损失函数,使得模型预测出的概率与真实的类别值之间的误差最小化。

• 优化目标是找到模型参数 w 和 b ,使得预测的概率尽量接近真实的类别。

SVM:

• SVM 使用的是 hinge loss 损失函数 ,其目标是最大化决策边界与支持向量的间隔。换句话说,SVM 会找到一个使分类正确且 间隔最大 的超平面

• 优化目标是找到能够最大化分类间隔的决策边界,而不仅仅是将样本正确分类。

3. 如何处理非线性问题

逻辑回归

• 逻辑回归是 线性模型,它的决策边界是线性的。如果数据是非线性的(例如无法通过一条直线或一个超平面分割),逻辑回归在原始特征空间中无法很好地解决问题。

• 为了处理非线性问题,逻辑回归可以通过 特征扩展(如多项式特征)来引入非线性,但这需要手动添加额外的特征。

SVM

• SVM 的一个核心优势是使用 核方法(Kernel Trick) ,它能够自动将数据映射到更高维的空间,在这个新空间中找到一个线性决策边界。因此,SVM 可以在 原始数据不可线性分割的情况下,通过核函数将其转化为线性可分。

• 常用的核函数有 RBF核 (高斯核)、多项式核等,它们能够很好地处理复杂的非线性问题。

4. 对噪声数据的敏感性

• 逻辑回归:

• 逻辑回归是一种基于概率的模型,对噪声数据相对不太敏感。即使数据中存在一些不易分类的样本,逻辑回归仍然可以通过概率分布合理地处理。
• SVM:

• SVM 对噪声数据较为敏感,因为 SVM 是通过 最大化支持向量与决策边界的间隔 来进行优化的。如果存在噪声样本,这些噪声样本可能会成为支持向量,从而影响到决策边界的位置。

• 为了解决这个问题,SVM 引入了 软间隔(Soft Margin) 和 惩罚参数 C ,允许模型对一些样本进行误分类,但会对这些误分类样本进行一定的惩罚。

5. 处理多分类问题

逻辑回归

• 逻辑回归可以轻松扩展到多分类问题,使用 一对多(One-vs-Rest, OvR)多项式逻辑回归(Softmax Regression) 来实现多分类任务。

SVM

• SVM 是 二分类算法 ,需要通过 一对多(OvR)一对一(One-vs-One) 的方式扩展到多分类问题。因此,SVM 在处理多分类问题时相对复杂,需要训练多个分类器。

6. 决策边界与泛化能力

逻辑回归的决策边界
  • 逻辑回归的决策边界是通过概率阈值来确定的。例如,假设我们将 ( 0.5 ) 作为阈值,那么模型的决策边界是使预测概率等于 ( 0.5 ) 的那条直线。

  • 优点:简单易懂,适合线性问题。

  • 缺点:如果数据线性不可分,逻辑回归的表现会非常差。

SVM 的决策边界
  • SVM 的决策边界是通过 最大化支持向量与超平面之间的间隔 来确定的。SVM 不仅要正确分类样本,还要保证边界的稳定性。

  • 优点 :SVM 的最大间隔策略使得它在应对新样本时具有更好的 泛化能力,特别是在高维空间中,SVM 能够有效处理复杂问题。

  • 缺点:对于噪声敏感,因为支持向量是影响决策边界的关键,噪声点可能成为支持向量,影响分类效果。

7. 优缺点对比

算法 逻辑回归 SVM
核心思想 基于概率的模型,输出概率值 基于最大化间隔,找到最优的决策边界
决策边界 线性决策边界,通过设定阈值确定分类 最大化分类间隔的超平面,确保支持向量离边界最远
非线性处理 需要手动扩展特征 核方法自动将数据映射到高维空间,处理非线性问题
概率输出 输出类别的概率值,适合需要概率判断的任务 仅输出类别标签,不提供概率值
噪声处理 对噪声较为鲁棒 对噪声敏感,可能会受支持向量影响
多分类处理 容易扩展为多分类(通过 Softmax 或 One-vs-Rest 方法) 二分类模型,需要 One-vs-One 或 One-vs-Rest 进行扩展
泛化能力 泛化能力较好,适合线性可分或近似线性可分的数据 在高维和复杂非线性数据中有更强的泛化能力

8. 如何选择 SVM 和 逻辑回归?

选择逻辑回归的情况
  • 数据是线性可分 或接近线性可分,数据的类别可以通过一条直线或一个超平面分割开来。

  • 需要概率输出,例如在一些医疗诊断、金融风险评估中,概率值的输出可以提供额外的信息。

  • 数据集较大 且模型训练时间有限,逻辑回归的计算效率较高,尤其是当数据集较大时。

  • 特征维度较低,逻辑回归在低维空间中的表现较好。

选择 SVM 的情况
  • 数据是线性不可分,或者数据的类别之间有复杂的边界。SVM 通过核函数可以处理非线性问题。

  • 高维数据集,尤其是当特征维度远大于样本数量时,SVM 的表现通常非常好。

  • 噪声较少 或你可以通过设置适当的惩罚参数 ( C ) 来控制模型对噪声的容忍度。

什么时候使用 SVM?

  1. 数据线性不可分

• 如果你的数据在原始空间中 线性不可分 ,SVM 的 核方法 可以有效地将数据映射到高维空间,在高维空间中实现线性分割。这是逻辑回归所不能轻松解决的问题。

  1. 需要更好的泛化能力

• SVM 通过最大化分类间隔来保证模型的 泛化能力,尤其是在样本数较少且特征维度较高的情况下,SVM 通常能够表现得非常好。

  1. 对分类边界的要求更高

• 如果你需要一个 非常明确的决策边界,并且希望分类边界能够最大化不同类别的分隔距离,SVM 是一个更好的选择。

  1. 特征维度高且数据量中等

• SVM 在处理高维数据时效果很好,尤其是在特征数量远多于样本数量的情况下。

什么时候使用逻辑回归?

  1. 需要概率输出

• 如果你不仅关心分类结果,还需要知道模型预测某个样本属于某个类别的 概率,那么逻辑回归是更好的选择。SVM 只能输出类别标签,而不能输出概率。

  1. 数据线性可分或接近线性可分

• 如果你的数据在原始特征空间中本来就是 线性可分的,逻辑回归通常能够很好地解决问题,训练速度快且效果好。

  1. 处理噪声较多的数据

• 逻辑回归对噪声数据较为鲁棒,因为它会基于概率分布进行分类,即使有一些噪声样本,也不会对模型的整体决策边界产生重大影响。

  1. 多分类任务

• 如果你面临的是一个 多分类任务,逻辑回归可以通过扩展(如 Softmax 回归)直接处理,而 SVM 需要训练多个分类器来实现多分类。

总结

逻辑回归 是基于概率的分类模型,适用于线性问题或接近线性的问题,并且能够输出类别的概率。在需要解释性或概率判断的任务中,逻辑回归表现更好。

SVM 是基于最大化分类间隔的模型,能够通过核方法处理复杂的非线性问题。在高维空间中,SVM 通常能够取得较好的泛化效果。特别是在数据线性不可分的情况下,SVM 比逻辑回归更具优势。

相关推荐
dundunmm1 小时前
机器学习之PCA降维
机器学习·信息可视化·数据挖掘·数据分析
千天夜1 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
Kenneth風车2 小时前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
feifeikon4 小时前
机器学习DAY4续:梯度提升与 XGBoost (完)
人工智能·深度学习·机器学习
IT猿手4 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解GLSMOP1-GLSMOP9及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·算法·机器学习·matlab·强化学习
Kenneth風车5 小时前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)111
算法·机器学习·分类
18号房客5 小时前
计算机视觉-人工智能(AI)入门教程一
人工智能·深度学习·opencv·机器学习·计算机视觉·数据挖掘·语音识别
QQ_7781329746 小时前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
IT古董6 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生6 小时前
机器学习连载
人工智能·机器学习