深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
沫儿笙4 分钟前
安川YASKAWA焊接机器人电池拖盘焊接节气
人工智能·机器人
iiiiii115 分钟前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
RPA机器人就选八爪鱼8 分钟前
RPA财务机器人:驱动财务数字化转型的核心引擎
大数据·运维·人工智能·机器人·rpa
tianyuanwo11 分钟前
从机器人到软件管理:“具身”思维如何重塑我们的世界
人工智能·管理·具身
长不大的蜡笔小新25 分钟前
手写数字识别:从零搭建神经网络
人工智能·python·tensorflow
z***y8621 小时前
机器学习重点
人工智能·机器学习
AI人工智能+1 小时前
文档抽取技术:通过OCR、NLP和机器学习技术,将非结构化的合同、发票等文档转化为结构化数据
人工智能·计算机视觉·nlp·ocr·文档抽取
johnny2331 小时前
AI IDE/插件(三):Task Master、DeepCode
ide·人工智能
ConardLi1 小时前
前端程序员原地失业?全面实测 Gemini 3.0,附三个免费使用方法!
前端·人工智能·后端
w***Q3501 小时前
深度学习博客
人工智能·深度学习