深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
商汤万象开发者2 分钟前
UniParse:让多模态模型真正“读懂”文档的解析引擎
人工智能·多模态模型·ai应用·文档解析·版面分析·内容提取
rit843249912 分钟前
压缩感知信号恢复算法:OMP与CoSaMP对比分析
数据库·人工智能·算法
Elastic 中国社区官方博客43 分钟前
ES|QL 在 9.2:智能查找连接和时间序列支持
大数据·数据库·人工智能·sql·elasticsearch·搜索引擎·全文检索
齐齐大魔王1 小时前
深度学习(三)
人工智能·深度学习
一个帅气昵称啊1 小时前
Net AI智能体开源框架NetCoreKevin为企业AI智能体系统Saas信息化建设赋能-开启智能应用的无限可能
人工智能·开源
yzx9910131 小时前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
路边草随风1 小时前
python 调用 spring ai sse mcp
人工智能·python·spring
深圳市快瞳科技有限公司2 小时前
宠物识别算法在AI摄像头的应用实践:从多宠识别到行为分析
人工智能·智能硬件·宠物
ziwu2 小时前
【鱼类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
小马爱打代码2 小时前
Spring AI:ChatMemory 实现聊天记忆功能
java·人工智能·spring