深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
chatexcel19 分钟前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化
All The Way North-21 分钟前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
bylander34 分钟前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
Techblog of HaoWANG1 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace01231 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_941418551 小时前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔1 小时前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪1 小时前
Clawbot (OpenClaw)简介
人工智能
童话名剑2 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
2501_933329552 小时前
品牌公关AI化实践:Infoseek舆情系统技术架构解析
人工智能·自然语言处理