深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
OpenCSG37 分钟前
OpenCSG 2025年11月月报:智能体平台、AI技术合作与开源生态进展
人工智能·开源·opencsg·csghub
围炉聊科技1 小时前
当AI成为“大脑”:人类如何在机器时代找到不可替代的价值?
人工智能
لا معنى له1 小时前
残差网络论文学习笔记:Deep Residual Learning for Image Recognition全文翻译
网络·人工智能·笔记·深度学习·学习·机器学习
菜只因C1 小时前
深度学习:从技术本质到未来图景的全面解析
人工智能·深度学习
工业机器视觉设计和实现1 小时前
lenet改vgg训练cifar10突破71分
人工智能·机器学习
咚咚王者1 小时前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析·matplotlib
TTGGGFF2 小时前
人工智能:用Gemini 3一键生成3D粒子电子手部映射应用
人工智能·3d·交互
LitchiCheng2 小时前
Mujoco 基础:获取模型中所有 body 的 name, id 以及位姿
人工智能·python
Allen_LVyingbo2 小时前
面向医学影像检测的深度学习模型参数分析与优化策略研究
人工智能·深度学习
CareyWYR2 小时前
每周AI论文速递(251124-251128)
人工智能