深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
钟屿几秒前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
仙人掌_lz8 分钟前
用PyTorch在超大规模下训练深度学习模型:并行策略全解析
人工智能·pytorch·深度学习
商业讯8 分钟前
深圳无人机展览即将开始,无人机舵机为什么选择伟创动力
人工智能
视觉语言导航15 分钟前
AAAI-2025 | 中科院无人机导航新突破!FELA:基于细粒度对齐的无人机视觉对话导航
人工智能·深度学习·机器人·无人机·具身智能
孚为智能科技20 分钟前
无人机箱号识别系统结合5G技术的应用实践
图像处理·人工智能·5g·目标检测·计算机视觉·视觉检测·无人机
灏瀚星空25 分钟前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信
Livan.Tang27 分钟前
LIO-SAM框架理解
人工智能·机器学习·slam
-曾牛34 分钟前
Spring AI 集成 Mistral AI:构建高效多语言对话助手的实战指南
java·人工智能·后端·spring·microsoft·spring ai
迅易科技44 分钟前
当数控编程“联姻”AI:制造工厂的“智能大脑”如何炼成?
人工智能·ai·知识图谱·ai编程·deepseek
沫儿笙1 小时前
KUKA库卡焊接机器人智能气阀
人工智能·物联网·机器人