深度学习与数学归纳法

最近发现,深度学习可以分为两个主要的阶段,分别是前向推理以及反向传播,分别对应着网络的推理和参数训练两个步骤。其中推理有时候也称为归纳推理。

在做参数训练的时候,本质上是在利用历史数据求网络参数的先验分布; p ( θ ∣ x , y ) p(\theta | x,y) p(θ∣x,y)

在推理的时候,本质是在基于训练好的参数进行极大似然估计。 p ( y ∣ x , θ ) p(y |x, \theta) p(y∣x,θ)

此外,深度学习解决问题时,往往先假设所有的参数都能够训练到最优 θ ∗ \theta^* θ∗,然后在这个最优训练参数假设下构建前向网络进行建模。等建模表征完之后,再去基于数据和优化器把参数训练到最优。这个思想其实和数学归纳法里面的先假设某个条件成立,再去做其他事情,然后再反过来优化这个条件很像,也和EM估计的思想很像。

这也可以解释为什么很多网络结构的改进的论文,本质上是提供了参数交互的接口,让网络有机会对某种类型的数据进行建模和表征,然后再去对其进行训练。

相关推荐
serve the people2 分钟前
LSTM 模型 简要解析
人工智能·rnn·lstm
资源补给站3 分钟前
论文10-ICCV 2025 | WaveMamba:面向RGB-红外目标检测的多频域Mamba融合新范式
人工智能·计算机视觉·目标跟踪
中冕—霍格沃兹软件开发测试5 分钟前
Git版本控制在测试项目管理中的应用
人工智能·git·科技·开源·appium·bug
用户51914958484510 分钟前
ADBKeyBoard:通过ADB实现Android虚拟键盘输入
人工智能·aigc
Lululaurel11 分钟前
AI编程文本挖掘提示词实战
人工智能·python·机器学习·ai·ai编程·提示词
一瞬祈望20 分钟前
⭐ 深度学习入门体系(第 3 篇):反向传播到底怎么工作的?
人工智能·深度学习
居然JuRan24 分钟前
终于有人把大模型讲明白了:LLM 从入门到精通全解析
人工智能
2501_9247949027 分钟前
告别报告撰写“时间黑洞”:华为云Flexus AI智能体,重塑企业研究与决策效率
人工智能·华为云
kkk_皮蛋33 分钟前
“红色警报“后的反击:OpenAI 发布 GPT-5.2,AI 霸主之争白热化
人工智能·gpt·chatgpt
Felaim34 分钟前
Sparse4D 时序输入和 Feature Queue 详解
人工智能·深度学习·自动驾驶