(题干略)
python
"""
# Definition for a QuadTree node.
class Node:
def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
self.val = val
self.isLeaf = isLeaf
self.topLeft = topLeft
self.topRight = topRight
self.bottomLeft = bottomLeft
self.bottomRight = bottomRight
"""
class Solution:
def construct(self, grid: List[List[int]]) -> "Node":
return self._construct(grid, 0, 0, len(grid) - 1, len(grid[0]) - 1)
def _construct(
self, grid: List[List[int]], x1: int, y1: int, x2: int, y2: int
) -> "Node":
q = (
x2 - x1 + 1
) >> 1 # 给定正方形中四分之一正方形的边长,特别地,q == 0 时,表示该正方形不可再分
if not q:
return Node(grid[x1][y1], True, None, None, None, None)
topLeft = self._construct(grid, x1, y1, x1 + q - 1, y1 + q - 1)
topRight = self._construct(grid, x1, y1 + q, x1 + q - 1, y2)
bottomLeft = self._construct(grid, x1 + q, y1, x2, y1 + q - 1)
bottomRight = self._construct(grid, x1 + q, y1 + q, x2, y2)
# 有四个叶子节点,且值相同就向上合并为新的叶子节点
if (
topLeft.isLeaf
and topRight.isLeaf
and bottomLeft.isLeaf
and bottomRight.isLeaf
and topLeft.val == topRight.val == bottomLeft.val == bottomRight.val
):
return Node(topLeft.val, True, None, None, None, None)
else:
return Node(0, False, topLeft, topRight, bottomLeft, bottomRight)
时间复杂度
本题是经典的基于分治思想写出的递归解法,假设每个边长为n的矩形区域耗时为T(n),显然T(1) = O(1),则 T(n) = 4 T(n/2) + O(1),根据主定理可以求得时间复杂度为 O(n^2)
空间复杂度
空间复杂度为递归所占用的最大栈深度,算法整个栈的搜索空间为一颗完全四叉树,最深层的叶子节点为n^2个,最大栈深度就是二叉树的高度,有公式 4^(h-1) = n^2,则空间复杂度为 O(logn)