数据仓库简介(一)

数据仓库概述

1. 什么是数据仓库?

数据仓库(Data Warehouse,简称 DW)是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据,为不同层级的决策提供支持,构成商业智能(BI)的一部分。

1.1 数据仓库的目标

数据仓库的核心目标是:

  • 分析与挖掘数据:提供决策支持。
  • 集中数据存储:从多种来源采集和抽取数据,形成企业数据的全局视图。
  • ETL 技术:通过数据抽取、转换和加载(ETL)技术实现数据的统一集成。

1.2 数据仓库的定义

数据仓库是一个:

  • 面向主题的:专注于特定的业务主题。
  • 集成的:从不同的数据源聚合数据。
  • 相对稳定的:数据在装入后一般不可更新,主要用于查询。
  • 反映历史变化的:保存历史数据,支持管理决策。

4. 数据仓库的特点

面向主题

数据仓库专注于特定业务领域,仅保留与该主题相关的数据,排除无关细节。

随时间变化

数据仓库能够保存历史数据,支持基于时间变化的分析,通常使用拉链表的方式在保证访问历史快照的同时降低存储空间。

集成的

通过 ETL 操作,将来自不同来源的数据集成到统一的数据仓库中。

数据不可更新

数据仓库的数据在加载后主要进行查询操作,不支持传统数据库的增删改操作,反映的是长时间范围内的历史数据。

5. 数据仓库与关系型数据库区别

特性 数据仓库 /Hive 关系型数据库/Mysql,Oracle
数据范围 历史的/完整的/反映历史变化的数据 当前在线交易状态数据
数据变化 可添加/无删除/无更新/反应历史变化 支持频繁的增删改查
应用场景 BI、支持战略决策 面向业务交易/事务流程
设计理论 面向主题设计、违背范式、适当冗余 面向事务设计、遵循范式、避免冗余
处理特点 非频繁/大批量/高吞吐/有延迟 频繁/小批次/高并发/低延迟
服务对象 分析数据、服务于决策支持 捕获数据、服务于业务操作人员
相关推荐
十月南城11 分钟前
Hive与离线数仓方法论——分层建模、分区与桶的取舍与查询代价
数据仓库·hive·hadoop
AI架构师小马2 小时前
Hive调优手册:从入门到精通的完整指南
数据仓库·hive·hadoop·ai
Gain_chance3 小时前
33-学习笔记尚硅谷数仓搭建-DWS层交易域用户粒度订单表分析及设计代码
数据库·数据仓库·hive·笔记·学习·datagrip
心疼你的一切18 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
心疼你的一切1 天前
基于CANN仓库打造轻量级AIGC:一键生成图片语义描述
数据仓库·aigc·cann
AC赳赳老秦1 天前
代码生成超越 GPT-4:DeepSeek-V4 编程任务实战与 2026 开发者效率提升指南
数据库·数据仓库·人工智能·科技·rabbitmq·memcache·deepseek
心疼你的一切1 天前
拆解 CANN 仓库:实现 AIGC 文本生成昇腾端部署
数据仓库·深度学习·aigc·cann
心疼你的一切1 天前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann
心疼你的一切1 天前
解锁CANN仓库核心能力:从零搭建AIGC轻量文本生成实战(附代码+流程图)
数据仓库·深度学习·aigc·流程图·cann
秃了也弱了。1 天前
StarRocks:高性能分析型数据仓库
数据仓库