遥感图像语义分割数据集制作(使用ArcGIS Pro)

0. 引言

图像分割就是把图像空间按照一定的要求分成一些"有意义"的区域的技术叫图像分割。
一幅图像通常是由代表物体的图案与背景组成,简称物体与背景。若想从一幅图像中"提取"物体,可以设法用专门的方法标出属于该物体的点,如把物体上的点标为"1",而把背景点标为"0",通过分割以后,可得一幅二值图像。

如图所示,我们将遥感图像中目标地物作为前景,通过语义分割网络实现前景与背景之间的分割:

1. 数据获取

遥感数据获取的方式有很多,主要包括自身项目获取的商业卫星影像(如高分系列卫星数据等)和通过网站下载获取的开源免费的遥感卫星数据(如Landsat、Sentinel、MODIS等)。下面列举了一些用于获取常用的免费的遥感卫星数据的网站:

1.1 欧空局ESA 哨兵数据

Copernicus Data Space 是ESA提供的在线数据服务平台,主要提供Sentinel卫星数据。用户需要注册账号后,可以通过该平台检索和下载Sentinel数据。Copernicus Data Space 生态系统 |欧洲的地球之眼https://dataspace.copernicus.eu/

1.2 Earth Data地球科学数据系统(NASA)

地球科学数据系统 (ESDS) 计划提供对 NASA 地球科学数据收集的全面和开放访问,提供了多种遥感数据,包括MODIS、ASTER等。用户可以在该网站上注册账号,并通过不同的工具获取数据,如NASA Worldview、NASA GIBS等。

Earthdata | Earthdata (nasa.gov)https://www.earthdata.nasa.gov/

1.3 Google Earth Engine(GEE)

GEE是一个在线的遥感数据处理平台,提供了全球范围内多种遥感数据。用户可以通过编写JavaScript代码在平台上进行数据处理和下载,包括Landsat、Sentinel、MODIS等系列卫星的遥感影像数据。

https://developers.google.com/earth-engine/https://developers.google.com/earth-engine/

1.4 地理空间数据云

地理空间数据云是中国科学院计算机网络信息中心下属数据平台,具有包括Landsat、MODIS、Sentinel等常见遥感数据,也包括高分1/2/3/4/5/6号、资源三号等国产数据。

地理空间数据云https://www.gscloud.cn/home

1.5 NOAA系列卫星数据

NOAA(美国国家海洋和大气管理局)的卫星系列广泛应用于科研、气象预报、环境监测和灾害管理等领域。如GOES(地球静止环境卫星)系列,提供实时天气监测和预报,能够跟踪风暴、温度、湿度等气象参数。POES(极地轨道环境卫星)系列和JPSS(联合极地卫星系统),获取全球气候数据,监测温度、降水、海冰覆盖等。SST(海表温度)和海洋色素数据,有助于研究海洋生态系统和气候变化。此外,NOAA系列卫星还可以提供关于温室气体、气溶胶和臭氧层等大气成分的数据,支持环境和气候变化研究。

国家环境卫星、数据和信息服务 (noaa.gov)https://www.nesdis.noaa.gov/

1.6 吉林一号高分辨率影像

"吉林一号"卫星遥感影像已广泛应用于国土资源监测、土地测绘、矿产资源开发、智慧城市建设、交通设施监测、农业估产、林业资源普查、生态环境监测、防灾减灾及应急响应等领域。

该系列卫星数据可通过教育认证形式申请免费数据使用,分辨率可达亚米级!!

吉林一号网 (jl1mall.com)https://www.jl1mall.com/

2. 数据标注

在计算机视觉任务中,尤其是在图像分割领域,数据标注通常使用Labelme工具进行目标标记。然而,与常规RGB图像(如.jpg和.png格式)不同,遥感图像通常包含更多的数据通道(如.tif格式),并且包含丰富的空间坐标信息。因此,使用传统的数据标注方法往往会导致重要属性信息的丢失。

在接下来的部分,我们将以ArcGIS Pro工具为例,进行遥感图像的数据人工标注,以便为深度学习模型的训练提供高质量的输入数据。通过这种方式,我们可以更好地保留遥感图像的多维信息,从而提高模型的性能和准确性。

2.1 加载遥感影像

2.2 新建shapefile(矢量)文件

2.3 标注目标地物

1. 选中新建的shapefile图层

2. 选择编辑

3. 点击创建

4. 选择面

5. 开始勾画索要提取的区域

2.4 设置属性值

1.选中新建的shapefile图层

2.右键该图层打开属性表

3.点击按属性选择

4.选择所有id=0的数据

5.点击计算

6.在计算字段的选项框中字段名称选择id,选择插入值选项,并将插入值=255

注:值255后续可用于创建Label文件时作为目标地物的像元值,该部分也可以在开始时新建一个属性字段value用于保存目标地物的像元值。

当目标地物为多个类别时,可采用不同的像元灰度值作为每一类地物的标识,如128,255等,背景为0

7.点击确定

2.5 将矢量标注文件转换为栅格数据

1.在顶部的视图选项中选择地理处理选项

2. 查找面转栅格工具

3. 在面转栅格的工具栏内进行设置

!!在该部分中,输入要素选择最开始创建的shapefile图层, 值字段选择所设置像元灰度值的字段名称,输出的栅格数据集选择自己的路径,像元分配类型以像元中心,像元大小选择进行标注的影像。

!!随后点击环境配置,在该部分中,像元大小,捕获栅格输出的坐标均要以最开始参考的影像一致,不然会出现导出的栅格图层与原始的影像像元数不对应的情况。

最后点击运行,便可将所标注的矢量转为栅格数据(.tif格式),并在ArcGIS Pro中检查该标注栅格是否与原始影像的栅格像元数大小一致**。**

3. 数据集制作

在初步标注数据后,我们将获得一对影像:原始的遥感影像和相应的标注影像。然而,由于遥感影像的像元数量(即宽度和高度)往往较大且不规则,而深度学习模型的训练则需要规则的像元大小(如256×256或512×512),因此需要对数据进行进一步处理,以符合网络训练的要求。

接下来,我们将采用Python和GDAL库进行数据的滑动裁剪,以生成符合训练需求的标准化影像。这一过程不仅能保证影像的连续性和完整性,还能有效提高模型的训练效率和准确性。

3.1 滑动裁剪

下面这段代码用于对遥感影像进行滑动裁剪,以生成适合深度学习模型训练的数据集。

代码的主要功能分为三个部分:读取影像、滑动裁剪和保存裁剪结果。

  1. 读取数据read_image函数使用GDAL库读取指定路径的影像文件。可以选择读取特定波段或所有波段,并将影像数据以NumPy数组的形式返回。如果影像无法打开,将返回None。

  2. 滑动裁剪sliding_crop函数对读取的影像进行裁剪。首先,计算是否需要在图像的边缘进行填充,以确保裁剪窗口的完整性。然后,利用指定的窗口大小和步长,在影像上进行滑动裁剪,生成多个裁剪的小图像,这些小图像被存储在列表中并返回。

  3. 保存数据save_crops函数负责将裁剪后的影像保存到指定目录中。首先检查输出目录是否存在,不存在则创建之。接着,通过检查现有文件,确保新文件的命名不与已有文件冲突。每个裁剪图像使用连续的索引命名。save_image函数使用GDAL库将影像数据保存为GeoTIFF格式。

在主程序部分,代码读取原始影像和标注影像,确保它们的尺寸相同后,执行裁剪并保存结果。如果尺寸不一致,程序会输出相应的错误信息。整体流程高效且易于扩展,适合处理大规模遥感影像数据集。

python 复制代码
import os
from osgeo import gdal
import numpy as np
from tqdm import tqdm

# 读取数据
def read_image(image_path, num_bands=None, selected_bands=None):
    dataset = gdal.Open(image_path)
    if dataset is None:
        print(f"Could not open image: {image_path}")
        return None
    else:
        if num_bands is None:
            num_bands = dataset.RasterCount
        image_data = []
        for i in range(1, num_bands + 1):
            if selected_bands is not None and i not in selected_bands:
                continue
            band = dataset.GetRasterBand(i)
            band_data = band.ReadAsArray()
            image_data.append(band_data)
        return np.array(image_data)

# 滑动裁剪
def sliding_crop(image, window_size=(512, 512), stride=256):
    height, width = image.shape[1], image.shape[2]

    # 计算需要填充的高度和宽度
    pad_height = 0
    pad_width = 0
    if height % window_size[0] != 0:
        pad_height = window_size[0] - (height % window_size[0])
    if width % window_size[1] != 0:
        pad_width = window_size[1] - (width % window_size[1])

    # 在图像右侧和下侧填充0值
    padded_image = np.pad(image, ((0, 0), (0, pad_height),
                          (0, pad_width)), mode='constant', constant_values=0)

    crops = []
    for y in range(0, height + pad_height - window_size[0] + 1, stride):
        for x in range(0, width + pad_width - window_size[1] + 1, stride):
            crop = padded_image[:, y:y+window_size[0], x:x+window_size[1]]
            crops.append(crop)
    return crops

# 保存数据
def save_crops(crops, output_dir):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    existing_files = os.listdir(output_dir)
    existing_indices = set()
    for filename in existing_files:
        if filename.startswith("crop_") and filename.endswith(".tif"):
            index_str = filename.split("_")[1].split(".")[0]
            existing_indices.add(int(index_str))

    start_index = max(existing_indices) + 1 if existing_indices else 0

    for i, crop in enumerate(crops):
        output_path = os.path.join(output_dir, f"crop_{start_index + i}.tif")
        save_image(crop, output_path)

def save_image(image_data, output_path):
    num_bands, height, width = image_data.shape
    driver = gdal.GetDriverByName("GTiff")
    dataset = driver.Create(output_path, width, height,
                            num_bands, gdal.GDT_Byte)
    for i in range(num_bands):
        dataset.GetRasterBand(i + 1).WriteArray(image_data[i])
    dataset.FlushCache()


if __name__ == "__main__":
    # 影像的路径
    image_path = r"xxxx.tif"
    # 标签的路径
    label_path = r"xxxx.tif"
    images = read_image(image_path)
    labels = read_image(label_path, 1)
    if images.shape[1:] == labels.shape[1:]:
        print("Images have same dimensions. Starting cropping...")
        # 设置滑动窗口的大小及步长,用于生成重叠的滑动裁剪块
        images_crops = sliding_crop(images, window_size=(512, 512), stride=256)
        labels_crops = sliding_crop(labels, window_size=(512, 512), stride=256)
        # 保存裁剪后的图像
        save_crops(images_crops,
                   r"H:\Images")# 影像块的文件夹
        save_crops(labels_crops,
                   r"H:\Labels")# 标签块的文件夹
        print("Cropping done and crops saved!")
    else:
        print("Images have different dimensions. Cannot proceed with cropping.")

最终,通过上述代码,我们可以生成两个对应的文件夹:Images和Labels,分别用于保存原始的遥感影像和相应的标签影像。接下来,用户可以根据自己的语义分割网络的数据读取方式,顺利进行网络训练。

代码已上传至GitHub仓库,未来还将定期更新更多用于遥感图像处理的Python代码,欢迎关注和使用!

GitHub - Harsh-M1/Tools-for-making-semantic-segmentation-data-sets-of-remote-sensing-images: The warehouse is used for making related tools for semantic segmentation data of remote sensing images, including: 1-.tif format remote sensing image and label image cropping (sliding cropping) Images and labels in 2-.tif format are converted to. jpg and. png formats. 3-label(.png format) is changed from 0-255 to gray values of 0, 1 and 2. ......The warehouse is used for making related tools for semantic segmentation data of remote sensing images, including: 1-.tif format remote sensing image and label image cropping (sliding cropping) Images and labels in 2-.tif format are converted to. jpg and. png formats. 3-label(.png format) is changed from 0-255 to gray values of 0, 1 and 2. ...... - Harsh-M1/Tools-for-making-semantic-segmentation-data-sets-of-remote-sensing-imageshttps://github.com/Harsh-M1/Tools-for-making-semantic-segmentation-data-sets-of-remote-sensing-images/tree/main

相关推荐
威化饼的一隅1 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心1 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
MorleyOlsen3 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习
愚者大大5 小时前
1. 深度学习介绍
人工智能·深度学习
liuming19925 小时前
Halcon中histo_2dim(Operator)算子原理及应用详解
图像处理·人工智能·深度学习·算法·机器学习·计算机视觉·视觉检测
长风清留扬6 小时前
机器学习中的密度聚类算法:深入解析与应用
人工智能·深度学习·机器学习·支持向量机·回归·聚类
程序员非鱼6 小时前
深度学习任务简介:分类、回归和生成
人工智能·深度学习·分类·回归·生成
γ..6 小时前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
千穹凌帝7 小时前
基于深度学习多图像融合的屏幕缺陷检测方案
人工智能·深度学习·数码相机
Leweslyh15 小时前
物理信息神经网络(PINN)八课时教案
人工智能·深度学习·神经网络·物理信息神经网络