扩散模型学习

先验概率和后验概率是贝叶斯统计学中的两个重要概念,用于描述事件发生的概率在更新观测数据后的变化情况。

  1. 先验概率(Prior Probability)

    • 先验概率是在考虑任何观测数据之前,对事件概率的初始估计或信念。
    • 它基于以往的知识、经验或主观判断,反映了在考虑新证据之前对事件概率的预期。
    • 先验概率通常用P(A)表示,其中A是某个事件。
  2. 后验概率(Posterior Probability)

    • 后验概率是在考虑了新的观测数据或证据之后,对事件概率进行更新后得到的概率。
    • 它结合了先验概率和新的数据,通过贝叶斯定理计算得出。
    • 后验概率通常用P(A|B)表示,其中A是事件,B是观测数据或证据。

https://zhuanlan.zhihu.com/p/38567891#:~:text=%E5%90%8E%E9%AA%8C%E6%A6%82%E7%8E%87%EF%BC%88pos

The future is independent of the past given the present
未来独立于过去,只基于当下。

这句人生哲理的话也代表了马尔科夫链的思想:过去所有的信息都已经被保存到了现在的状态,基于现在就可以预测未来。

虽然这么说可能有些极端,但是却可以大大简化模型的复杂度,因此马尔可夫链在很多时间序列模型

中得到广泛的应用,比如循环神经网络 RNN,隐式马尔可夫模型 HMM 等,当然 MCMC 也需要它。

https://zhuanlan.zhihu.com/p/448575579#:~:text=%E6%9C%AC%E6%96%87%E4%BB%8B%E7%BB%8D%E4%BA%86%E9%A9%AC%E5%B0%94%E5%8F%AF#:~:text=%E6%9C%AC%E6%96%87%E4%BB%8B%E7%BB%8D%E4%BA%86%E9%A9%AC%E5%B0%94%E5%8F%AF

持续火爆!!!《AIGC 面试宝典》已圈粉无数!-CSDN博客

DiT的定义:Diffusion Transformer是一种结合了Transformer架构的扩散模型,用于图像和视频生成任务,能够高效地捕获数据中的依赖关系并生成高质量的结果。

DiT的核心思想:Diffusion Transformer的核心思想是使用Transformer作为扩散模型的骨干网络,而不是传统的卷积神经网络(如U-Net),以处理图像的潜在表示。

相关推荐
顾道长生'6 天前
(Arxiv-2024)SnapGen:通过高效的架构和训练,为移动设备打造高分辨率文本转图像模型
计算机视觉·架构·扩散模型
好评笔记12 天前
Stable Diffusion核心网络结构——CLIP Text Encoder
人工智能·stable diffusion·aigc·sd·扩散模型·clip·u-net
长安er15 天前
生成式扩散模型学习
深度学习·学习·计算机视觉·扩散模型·透过散射介质成像·计算机光学成像·分数模型
好评笔记15 天前
Stable Diffusion核心网络结构——VAE
人工智能·stable diffusion·aigc·sd·diffusion
好评笔记15 天前
Stable Diffusion核心网络结构——U-Net
人工智能·stable diffusion·aigc·sd·扩散模型·clip
杀生丸学AI18 天前
【3D AIGC】Img-to-3D、Text-to-3D、稀疏重建(2024年文章汇总)
人工智能·3d·aigc·三维重建·扩散模型·高斯泼溅
AI生成未来18 天前
突破空间限制!从2D到3D:北大等开源Lift3D,助力精准具身智能操作!
3d·扩散模型·具身智能
Struart_R1 个月前
Edify 3D: Scalable High-Quality 3D Asset Generation 论文解读
人工智能·深度学习·3d·扩散模型·三维生成·三维资产
AI生成未来1 个月前
生成任意3D和4D场景!GenXD:通用3D-4D联合生成框架 | 新加坡国立&微软
3d·扩散模型·4d
Struart_R1 个月前
最新三维视觉下的扩散模型综述——Diffusion Models in 3D Vision: A Survey
人工智能·扩散模型·综述·三维视觉