扩散模型学习

先验概率和后验概率是贝叶斯统计学中的两个重要概念,用于描述事件发生的概率在更新观测数据后的变化情况。

  1. 先验概率(Prior Probability)

    • 先验概率是在考虑任何观测数据之前,对事件概率的初始估计或信念。
    • 它基于以往的知识、经验或主观判断,反映了在考虑新证据之前对事件概率的预期。
    • 先验概率通常用P(A)表示,其中A是某个事件。
  2. 后验概率(Posterior Probability)

    • 后验概率是在考虑了新的观测数据或证据之后,对事件概率进行更新后得到的概率。
    • 它结合了先验概率和新的数据,通过贝叶斯定理计算得出。
    • 后验概率通常用P(A|B)表示,其中A是事件,B是观测数据或证据。

https://zhuanlan.zhihu.com/p/38567891#:~:text=%E5%90%8E%E9%AA%8C%E6%A6%82%E7%8E%87%EF%BC%88pos

The future is independent of the past given the present
未来独立于过去,只基于当下。

这句人生哲理的话也代表了马尔科夫链的思想:过去所有的信息都已经被保存到了现在的状态,基于现在就可以预测未来。

虽然这么说可能有些极端,但是却可以大大简化模型的复杂度,因此马尔可夫链在很多时间序列模型

中得到广泛的应用,比如循环神经网络 RNN,隐式马尔可夫模型 HMM 等,当然 MCMC 也需要它。

https://zhuanlan.zhihu.com/p/448575579#:~:text=%E6%9C%AC%E6%96%87%E4%BB%8B%E7%BB%8D%E4%BA%86%E9%A9%AC%E5%B0%94%E5%8F%AF#:~:text=%E6%9C%AC%E6%96%87%E4%BB%8B%E7%BB%8D%E4%BA%86%E9%A9%AC%E5%B0%94%E5%8F%AF

持续火爆!!!《AIGC 面试宝典》已圈粉无数!-CSDN博客

DiT的定义:Diffusion Transformer是一种结合了Transformer架构的扩散模型,用于图像和视频生成任务,能够高效地捕获数据中的依赖关系并生成高质量的结果。

DiT的核心思想:Diffusion Transformer的核心思想是使用Transformer作为扩散模型的骨干网络,而不是传统的卷积神经网络(如U-Net),以处理图像的潜在表示。

相关推荐
这张生成的图像能检测吗3 天前
Wonder3D: 跨域扩散的单图像3D重建技术
pytorch·深度学习·机器学习·计算机视觉·3d·三维重建·扩散模型
海边夕阳20064 天前
【每天一个AI小知识】:什么是扩散模型?
人工智能·经验分享·深度学习·机器学习·扩散模型
Echo_NGC22376 天前
【DDPM 扩散模型】Part 7:最后总结!Denoising Diffusion Probabilistic Models论文全维度详解
人工智能·深度学习·神经网络·扩散模型·ddpm·高斯噪声
豆芽8196 天前
计算机视觉:异常检测(paper with code汇总更新中)
人工智能·神经网络·计算机视觉·视觉检测·扩散模型
JOYCE_Leo167 天前
Learning Diffusion Texture Priors for Image Restoration(DTPM)-CVPR2024
深度学习·扩散模型·图像复原
吐个泡泡v9 天前
扩散模型详解:从DDPM到Stable Diffusion再到DiT的技术演进
stable diffusion·transformer·扩散模型·ddpm·dit
九河_12 天前
关于DiT模型的一些思考
transformer·vae·diffusion·dit
李加号pluuuus15 天前
【扩散基础】基于分数的扩散模型
扩散模型
风巽·剑染春水15 天前
【技术追踪】D2Diff:一种用于精确多对比度MRI合成的双域扩散模型(MICCAI-2025)
diffusion·图像生成·mri·脑肿瘤
AI生成未来16 天前
ICCV 2025 | 北大王选所推出AnyPortal:像素级操控视频背景,前景细节100%保留!
人工智能·扩散模型·视频编辑·视频生成