实战精选 | 如何用 OpenVINO™ 在本地快速部署 Llama 3.2

点击蓝字

关注我们,让开发变得更有趣

作者 | 武卓 英特尔 AI 软件布道师

排版 | 吴紫琴

OpenVINO™

随着 Llama 3.2 的刚刚发布,最新的AI模型进展比以往更加易于获取。借助 OpenVINO™ 和 Optimum Intel 的无缝集成,你可以在本地 Intel 硬件上压缩、优化并运行这个强大的模型。在本指南中,我们将带你完成整个流程,从环境搭建到最终执行,帮助你以最少的努力充分发挥 Llama 3.2 的潜力。

OpenVINO™

在 AI PC 的集成 GPU 上运行 Llama 3.2

下载 OpenVINO™ GenAI 示例代码

安装最新版本及依赖项

使用 NNCF 下载并导出 Llama 3.2

运行模型

总结

第0步:为开发准备你的机器!

对于第一次使用的用户,建议你按照Wiki中的基本设置步骤(1、2和3)进行。

机器设置并准备就绪 =)

第1步:下载 OpenVINO™ GenAI 示例代码

使用 OpenVINO™ GenAI API 在 Windows 上运行 Llama 3.1 的最简单方法是使用提供的示例代码进行设置。

首先,克隆仓库:

php 复制代码
git clone https://github.com/openvinotoolkit/openvino.genai.git

在仓库中,你会找到一个名为 chat_sample 的 Python 示例。这个简洁的示例可以让你用不到40行代码执行 Llama 3.2,并与用户进行对话。它是开始探索模型功能的简便途径。

OpenVINO™ GenAI 的 Python 示例中的聊天示例

下面是示例代码的预览:

python 复制代码
#!/usr/bin/env python3
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import argparse
import openvino_genai
def streamer(subword):
    print(subword, end='', flush=True)
    # Return flag corresponds whether generation should be stopped.
    # False means continue generation.
    return False




def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('model_dir')
    args = parser.parse_args()


    device = 'CPU'  # GPU can be used as well
    pipe = openvino_genai.LLMPipeline(args.model_dir, device)


    config = openvino_genai.GenerationConfig()
    config.max_new_tokens = 100


    pipe.start_chat()
    while True:
        prompt = input('question:\n')
        if 'Stop!' == prompt:
            break
        pipe.generate(prompt, config, streamer)


        print('\n----------')
    pipe.finish_chat()




if '__main__' == __name__:
    main()

接下来,让我们设置环境以处理模型的下载、转换和执行。

第2步:安装最新版本和依赖项

为了避免依赖冲突,建议创建一个单独的虚拟环境:

nginx 复制代码
python -m venv openvino_venv

激活环境,

go 复制代码
openvino_venv\Script\activate

现在,安装必要的依赖项:

nginx 复制代码
python -m pip install --upgrade pip
pip install -U --pre openvino-genai openvino openvino-tokenizers[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly 
pip install --extra-index-url https://download.pytorch.org/whl/cpu "git+https://github.com/huggingface/optimum-intel.git" "git+https://github.com/openvinotoolkit/nncf.git" "onnx<=1.16.1"

第3步:使用 NNCF 下载并导出 Llama 3.2

在 从Hugging Face 导出模型之前,确保你已在此处接受使用协议。

然后,使用以下命令下载并导出模型:

javascript 复制代码
optimum-cli export openvino --model meta-llama/Meta-Llama-3.2-3B-Instruct --task text-generation-with-past --weight-format int4 --group-size 64 --ratio 1.0 --sym --awq --scale-estimation --dataset "wikitext2" --all-layers llama-3.2-3b-instruct-INT4

注:对于从 HuggingFace 网站上下载 Llama-3.2 模型的开发者,如果使用 Windows 系统,可以在 powershell 窗口中首先进行如下设置,再使用上述命令进行模型的下载、转换及压缩:

cs 复制代码
pip install -U huggingface_hub
set HF_ENDPOINT=https://hf-mirror.com

如果是 Linux 系统,在终端窗口中使用如下命令首先进行设置:

javascript 复制代码
pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com

也可以直接在魔搭社区

https://www.modelscope.cn/models/LLM-Research/Llama-3.2-3B-Instruct

进行模型下载。

下载完成后,在上述模型转换压缩命令中将模型名替换为下载后的模型保存的路径,即将命令修改如下:

javascript 复制代码
optimum-cli export openvino --model <your_model_path>/Llama-3.2-3B-Instruct --task text-generation-with-past --weight-format int4 --group-size 64 --ratio 1.0 --sym --awq --scale-estimation --dataset "wikitext2" --all-layers llama-3.2-3b-instruct-INT4

第四步:运行模型

你现在可以使用 OpenVINO™ 运行模型推理。运行以下命令:

nginx 复制代码
python chat_sample.py ./llama-3.2-8b-instruct-INT4

默认情况下,示例在 CPU 上运行。要切换到 GPU,只需在 chat_sample.py 中更新 device 参数:

ini 复制代码
pipe = ov_genai.LLMPipeline(model_path, "GPU")

最后,在我的AI PC集成显卡以及英特尔ARC A770独立显卡上运行推理的情况!

结论

使用 OpenVINO™ 在本地运行 Llama 3.2 为开发人员提供了一种强大且高效的解决方案,能够最大限度地提升 Intel 硬件上的 AI 性能。通过这种设置,你可以享受更快的推理时间、更低的延迟和更少的资源消耗------所有这些只需最少的设置和编码工作。希望本指南能帮助你快速有效地开始。祝编码愉快!

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more on the Performance Index site.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

OpenVINO™


*OpenVINO and the OpenVINO logo are trademarks of Intel Corporation or its subsidiaries.


OpenVINO 中文社区

微信号 : openvinodev

B站:OpenVINO中文社区

"开放、开源、共创"

致力于通过定期举办线上与线下的沙龙、动手实践及开发者交流大会等活动,促进人工智能开发者之间的交流学习。

○ 点击 " 在看 ",让更多人看见

相关推荐
夜幕龙11 分钟前
深度生成模型(二)——基本概念与数学建模
人工智能·深度学习·transformer
游王子16 分钟前
OpenCV(11):人脸检测、物体识别
人工智能·opencv·计算机视觉
山海青风17 分钟前
从零开始玩转TensorFlow:小明的机器学习故事 3
人工智能·机器学习·tensorflow
@心都18 分钟前
机器学习数学基础:35.效度
人工智能·机器学习
幻想趾于现实20 分钟前
傅里叶分析
人工智能
春末的南方城市27 分钟前
VidSketch:具有扩散控制的手绘草图驱动视频生成
人工智能·深度学习·计算机视觉·aigc
Toky丶35 分钟前
【文献阅读】A Survey on Model Compression for Large Language Models
人工智能·语言模型·自然语言处理
Williams101 小时前
解锁高效开发新姿势:Trae AI编辑器深度体验
人工智能·编辑器
Francek Chen1 小时前
【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能·深度学习·语言模型·大模型·aigc
楼台的春风2 小时前
【图像亮度、对比度调整,直方图均衡化及图像平滑】
图像处理·人工智能·opencv·算法·计算机视觉·matlab·嵌入式