实战精选 | 如何用 OpenVINO™ 在本地快速部署 Llama 3.2

点击蓝字

关注我们,让开发变得更有趣

作者 | 武卓 英特尔 AI 软件布道师

排版 | 吴紫琴

OpenVINO™

随着 Llama 3.2 的刚刚发布,最新的AI模型进展比以往更加易于获取。借助 OpenVINO™ 和 Optimum Intel 的无缝集成,你可以在本地 Intel 硬件上压缩、优化并运行这个强大的模型。在本指南中,我们将带你完成整个流程,从环境搭建到最终执行,帮助你以最少的努力充分发挥 Llama 3.2 的潜力。

OpenVINO™

在 AI PC 的集成 GPU 上运行 Llama 3.2

下载 OpenVINO™ GenAI 示例代码

安装最新版本及依赖项

使用 NNCF 下载并导出 Llama 3.2

运行模型

总结

第0步:为开发准备你的机器!

对于第一次使用的用户,建议你按照Wiki中的基本设置步骤(1、2和3)进行。

机器设置并准备就绪 =)

第1步:下载 OpenVINO™ GenAI 示例代码

使用 OpenVINO™ GenAI API 在 Windows 上运行 Llama 3.1 的最简单方法是使用提供的示例代码进行设置。

首先,克隆仓库:

php 复制代码
git clone https://github.com/openvinotoolkit/openvino.genai.git

在仓库中,你会找到一个名为 chat_sample 的 Python 示例。这个简洁的示例可以让你用不到40行代码执行 Llama 3.2,并与用户进行对话。它是开始探索模型功能的简便途径。

OpenVINO™ GenAI 的 Python 示例中的聊天示例

下面是示例代码的预览:

python 复制代码
#!/usr/bin/env python3
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import argparse
import openvino_genai
def streamer(subword):
    print(subword, end='', flush=True)
    # Return flag corresponds whether generation should be stopped.
    # False means continue generation.
    return False




def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('model_dir')
    args = parser.parse_args()


    device = 'CPU'  # GPU can be used as well
    pipe = openvino_genai.LLMPipeline(args.model_dir, device)


    config = openvino_genai.GenerationConfig()
    config.max_new_tokens = 100


    pipe.start_chat()
    while True:
        prompt = input('question:\n')
        if 'Stop!' == prompt:
            break
        pipe.generate(prompt, config, streamer)


        print('\n----------')
    pipe.finish_chat()




if '__main__' == __name__:
    main()

接下来,让我们设置环境以处理模型的下载、转换和执行。

第2步:安装最新版本和依赖项

为了避免依赖冲突,建议创建一个单独的虚拟环境:

nginx 复制代码
python -m venv openvino_venv

激活环境,

go 复制代码
openvino_venv\Script\activate

现在,安装必要的依赖项:

nginx 复制代码
python -m pip install --upgrade pip
pip install -U --pre openvino-genai openvino openvino-tokenizers[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly 
pip install --extra-index-url https://download.pytorch.org/whl/cpu "git+https://github.com/huggingface/optimum-intel.git" "git+https://github.com/openvinotoolkit/nncf.git" "onnx<=1.16.1"

第3步:使用 NNCF 下载并导出 Llama 3.2

在 从Hugging Face 导出模型之前,确保你已在此处接受使用协议。

然后,使用以下命令下载并导出模型:

javascript 复制代码
optimum-cli export openvino --model meta-llama/Meta-Llama-3.2-3B-Instruct --task text-generation-with-past --weight-format int4 --group-size 64 --ratio 1.0 --sym --awq --scale-estimation --dataset "wikitext2" --all-layers llama-3.2-3b-instruct-INT4

注:对于从 HuggingFace 网站上下载 Llama-3.2 模型的开发者,如果使用 Windows 系统,可以在 powershell 窗口中首先进行如下设置,再使用上述命令进行模型的下载、转换及压缩:

cs 复制代码
pip install -U huggingface_hub
set HF_ENDPOINT=https://hf-mirror.com

如果是 Linux 系统,在终端窗口中使用如下命令首先进行设置:

javascript 复制代码
pip install -U huggingface_hub
export HF_ENDPOINT=https://hf-mirror.com

也可以直接在魔搭社区

https://www.modelscope.cn/models/LLM-Research/Llama-3.2-3B-Instruct

进行模型下载。

下载完成后,在上述模型转换压缩命令中将模型名替换为下载后的模型保存的路径,即将命令修改如下:

javascript 复制代码
optimum-cli export openvino --model <your_model_path>/Llama-3.2-3B-Instruct --task text-generation-with-past --weight-format int4 --group-size 64 --ratio 1.0 --sym --awq --scale-estimation --dataset "wikitext2" --all-layers llama-3.2-3b-instruct-INT4

第四步:运行模型

你现在可以使用 OpenVINO™ 运行模型推理。运行以下命令:

nginx 复制代码
python chat_sample.py ./llama-3.2-8b-instruct-INT4

默认情况下,示例在 CPU 上运行。要切换到 GPU,只需在 chat_sample.py 中更新 device 参数:

ini 复制代码
pipe = ov_genai.LLMPipeline(model_path, "GPU")

最后,在我的AI PC集成显卡以及英特尔ARC A770独立显卡上运行推理的情况!

结论

使用 OpenVINO™ 在本地运行 Llama 3.2 为开发人员提供了一种强大且高效的解决方案,能够最大限度地提升 Intel 硬件上的 AI 性能。通过这种设置,你可以享受更快的推理时间、更低的延迟和更少的资源消耗------所有这些只需最少的设置和编码工作。希望本指南能帮助你快速有效地开始。祝编码愉快!

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more on the Performance Index site.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

OpenVINO™


*OpenVINO and the OpenVINO logo are trademarks of Intel Corporation or its subsidiaries.


OpenVINO 中文社区

微信号 : openvinodev

B站:OpenVINO中文社区

"开放、开源、共创"

致力于通过定期举办线上与线下的沙龙、动手实践及开发者交流大会等活动,促进人工智能开发者之间的交流学习。

○ 点击 " 在看 ",让更多人看见

相关推荐
一切皆有可能!!39 分钟前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声2 小时前
爆炸仿真的学习日志
人工智能
华奥系科技4 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE4 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25114 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint4 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志4 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly4 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx995 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域5 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售