李宏毅机器学习2022-HW9--Explainable AI

Task

CNN explanation

11种食物图片分类,与HW3使用同一个dataset

  • Bread, Diary product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Vegetables/Fruit

训练一个CNN model用于classification,并做一些explanations

Lime package

Lime

Saliency map

What is Saliency map ?

Saliency: 顯著性

The heatmaps that highlight pixels of the input image that contribute the most in the classification task.

Ref: https://medium.com/datadriveninvestor/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

We put an image into the model, forward then calculate the loss referring to the label. Therefore, the loss is related to:

  • image
  • model parameters
  • label

Generally speaking, we change model parameters to fit "image" and "label". When backward, we calculate the partial differential value of loss to model parameters. 一般来说,我们改变模型参数来拟合"图像"和"标签"。当反向时,我们计算损失对模型参数的偏微分值。

Now, we have another look. When we change the image's pixel value, the partial differential value of loss to image shows the change in the loss. We can say that it means the importance of the pixel. We can visualize it to demonstrate which part of the image contribute the most to the model's judgment. 现在,我们再看一遍。当我们改变图像的像素值时,损耗对图像的偏微分值表示损耗的变化。我们可以说这意味着像素的重要性。我们可以将其可视化,以演示图像的哪一部分对模型的判断贡献最大。

Smooth Grad

Smooth grad 的方法是,在圖片中隨機地加入 noise,然後得到不同的 heatmap,把這些 heatmap 平均起來就得到一個比較能抵抗 noisy gradient 的結果。

The method of Smooth grad is to randomly add noise to the image and get different heatmaps. The average of the heatmaps would be more robust to noisy gradient.

ref: https://arxiv.org/pdf/1706.03825.pdf

Filter Visualization

https://reurl.cc/mGZNbA

Integrated Gradients

https://arxiv.org/pdf/1703.01365.pdf

BERT Explanation

  • Attention Visualization
  • Embedding Visualization
  • Embedding analysis

##Attention Visualization

https://exbert.net/exBERT.html

##Embedding Visualization

Embedding 二维化

##Embedding analysis

用Euclidean distance 和 Cosine similarity 两种方法比较output embedding

下图是"果"

#Code Link

详细代码和问题解答见Github

相关推荐
人工智能训练6 分钟前
在ubuntu系统中如何将docker安装在指定目录
linux·运维·服务器·人工智能·ubuntu·docker·ai编程
掘金一周8 分钟前
没开玩笑,全框架支持的 dialog 组件,支持响应式| 掘金一周 11.6
前端·人工智能
电鱼智能的电小鱼31 分钟前
基于电鱼 ARM 边缘网关的智慧工地数据可靠传输方案——断点续传 + 4G/5G冗余通信,保障数据完整上传
arm开发·人工智能·嵌入式硬件·深度学习·5g·机器学习
Juchecar38 分钟前
翻译:Agentic AI:面向企业应用的智能
人工智能
武子康1 小时前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
半臻(火白)1 小时前
从“看见文字”到“理解内容”:DeepSeek-OCR重构OCR 2.0时代的效率革命
人工智能
番茄撒旦在上1 小时前
1.每日机器学习——Logits
机器学习
FreeCode1 小时前
LangChain 1.0智能体开发:记忆组件
人工智能·langchain·agent
Geoking.1 小时前
PyTorch 中 model.eval() 的使用与作用详解
人工智能·pytorch·python
nn在炼金1 小时前
图模式分析:PyTorch Compile组件解析
人工智能·pytorch·python