李宏毅机器学习2022-HW9--Explainable AI

Task

CNN explanation

11种食物图片分类,与HW3使用同一个dataset

  • Bread, Diary product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Vegetables/Fruit

训练一个CNN model用于classification,并做一些explanations

Lime package

Lime

Saliency map

What is Saliency map ?

Saliency: 顯著性

The heatmaps that highlight pixels of the input image that contribute the most in the classification task.

Ref: https://medium.com/datadriveninvestor/visualizing-neural-networks-using-saliency-maps-in-pytorch-289d8e244ab4

We put an image into the model, forward then calculate the loss referring to the label. Therefore, the loss is related to:

  • image
  • model parameters
  • label

Generally speaking, we change model parameters to fit "image" and "label". When backward, we calculate the partial differential value of loss to model parameters. 一般来说,我们改变模型参数来拟合"图像"和"标签"。当反向时,我们计算损失对模型参数的偏微分值。

Now, we have another look. When we change the image's pixel value, the partial differential value of loss to image shows the change in the loss. We can say that it means the importance of the pixel. We can visualize it to demonstrate which part of the image contribute the most to the model's judgment. 现在,我们再看一遍。当我们改变图像的像素值时,损耗对图像的偏微分值表示损耗的变化。我们可以说这意味着像素的重要性。我们可以将其可视化,以演示图像的哪一部分对模型的判断贡献最大。

Smooth Grad

Smooth grad 的方法是,在圖片中隨機地加入 noise,然後得到不同的 heatmap,把這些 heatmap 平均起來就得到一個比較能抵抗 noisy gradient 的結果。

The method of Smooth grad is to randomly add noise to the image and get different heatmaps. The average of the heatmaps would be more robust to noisy gradient.

ref: https://arxiv.org/pdf/1706.03825.pdf

Filter Visualization

https://reurl.cc/mGZNbA

Integrated Gradients

https://arxiv.org/pdf/1703.01365.pdf

BERT Explanation

  • Attention Visualization
  • Embedding Visualization
  • Embedding analysis

##Attention Visualization

https://exbert.net/exBERT.html

##Embedding Visualization

Embedding 二维化

##Embedding analysis

用Euclidean distance 和 Cosine similarity 两种方法比较output embedding

下图是"果"

#Code Link

详细代码和问题解答见Github

相关推荐
德迅云安全—珍珍2 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
cnxy1884 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
数新网络4 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee4 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch5 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手5 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1335 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯5 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q5 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs5 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链