spark:一些概念如并行度、分区数、task,stage等

定义: 并行度是指Spark任务可以同时执行的子任务(Task)的数量。

分区数: 一个RDD(弹性分布式数据集)被分成多个分区,每个分区对应一个Task。

因此,分区数直接决定了并行度的上限。这是因为如果分区数小于并行度,即使设置的并行度很大,但是没有那么多分区数来运行,所以实际的并行度会比设置的并行度小。

分区数是并行度的上限,但并行度不一定等于分区数。

一个分区对应一个Task,因此分区数决定了最多可以同时执行多少个Task。

Executor数量和核心数: Executor是Spark执行任务的工作单元,每个Executor可以同时执行多个Task。Executor的数量和每个Executor的核数共同决定了Spark集群的总计算资源,从而影响实际的并行度。

Executor数量和核心数决定了实际的并行度: Executor数量和核心数共同决定了Spark集群的总计算资源,从而影响实际的并行度。

分区数: 通常设置为集群中CPU核数的2-3倍。

同时设置并行度和分区数时,并行度小于分区数:Spark会以并行度为准,只启动与并行度相等的Task。剩余的分区会在后续的调度中被执行。

同时设置并行度和分区数时,并行度大于分区数:Spark会忽略多余的并行度设置,并以分区数为准。

动态分区:在Spark中,动态分区(Dynamic Partitioning)是一种在写入数据到Hive表时,根据数据本身的属性来决定分区键的值,从而实现自动分区的功能。与静态分区需要预先定义分区键不同,动态分区使得分区更加灵活,能够适应不断变化的数据。

窄依赖:父rdd的一个分区,全部将数据发给子rdd的一个分区

宽依赖 :父rdd的一个分区,将数据发给子rdd的多个分区。宽依赖也叫做shuffle。

**stage:**通常,从后向前,遇到宽依赖时,就会划分一个新的Stage。

相关推荐
武子康11 小时前
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例
大数据·后端·spark
闯闯桑1 天前
Spark 中spark.implicits._ 中的 toDF和DataFrame 类本身的 toDF 方法
大数据·ajax·spark·scala
武子康1 天前
大数据-94 Spark核心三剑客:RDD、DataFrame、Dataset与SparkSession全面解析
大数据·后端·spark
IT研究室2 天前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
XueminXu2 天前
Spark提交任务的资源配置和优化
spark·并行度·spark-submit·driver-memory·num-executors·executor-memory·executor-cores
Leo.yuan2 天前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark
小朋友,你是否有很多问号?2 天前
spark11-sparkSQL 实现wordcount
spark
IT研究室3 天前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
道一云黑板报3 天前
Spark生态全景图:图计算与边缘计算的创新实践
大数据·性能优化·spark·边缘计算
Lansonli3 天前
大数据Spark(六十三):RDD-Resilient Distributed Dataset
大数据·分布式·spark