spark:一些概念如并行度、分区数、task,stage等

定义: 并行度是指Spark任务可以同时执行的子任务(Task)的数量。

分区数: 一个RDD(弹性分布式数据集)被分成多个分区,每个分区对应一个Task。

因此,分区数直接决定了并行度的上限。这是因为如果分区数小于并行度,即使设置的并行度很大,但是没有那么多分区数来运行,所以实际的并行度会比设置的并行度小。

分区数是并行度的上限,但并行度不一定等于分区数。

一个分区对应一个Task,因此分区数决定了最多可以同时执行多少个Task。

Executor数量和核心数: Executor是Spark执行任务的工作单元,每个Executor可以同时执行多个Task。Executor的数量和每个Executor的核数共同决定了Spark集群的总计算资源,从而影响实际的并行度。

Executor数量和核心数决定了实际的并行度: Executor数量和核心数共同决定了Spark集群的总计算资源,从而影响实际的并行度。

分区数: 通常设置为集群中CPU核数的2-3倍。

同时设置并行度和分区数时,并行度小于分区数:Spark会以并行度为准,只启动与并行度相等的Task。剩余的分区会在后续的调度中被执行。

同时设置并行度和分区数时,并行度大于分区数:Spark会忽略多余的并行度设置,并以分区数为准。

动态分区:在Spark中,动态分区(Dynamic Partitioning)是一种在写入数据到Hive表时,根据数据本身的属性来决定分区键的值,从而实现自动分区的功能。与静态分区需要预先定义分区键不同,动态分区使得分区更加灵活,能够适应不断变化的数据。

窄依赖:父rdd的一个分区,全部将数据发给子rdd的一个分区

宽依赖 :父rdd的一个分区,将数据发给子rdd的多个分区。宽依赖也叫做shuffle。

**stage:**通常,从后向前,遇到宽依赖时,就会划分一个新的Stage。

相关推荐
GitCode官方9 小时前
科大讯飞星火科技文献大模型 Spark-Scilit-X1-13B 在 GitCode 开源,助力科研智能化革新!
科技·spark·gitcode
想ai抽13 小时前
大数据计算引擎-从源码看Spark AQE对于倾斜的处理
大数据·数据仓库·spark
菜鸡儿齐1 天前
spark组件-spark core(批处理)-rdd创建
大数据·分布式·spark
B站_计算机毕业设计之家1 天前
python股票交易数据管理系统 金融数据 分析可视化 Django框架 爬虫技术 大数据技术 Hadoop spark(源码)✅
大数据·hadoop·python·金融·spark·股票·推荐算法
想ai抽2 天前
Spark的shuffle类型与对比
大数据·数据仓库·spark
阿里云大数据AI技术2 天前
从“开源开放”走向“高效智能”:阿里云 EMR 年度重磅发布
spark
随心............3 天前
yarn面试题
大数据·hive·spark
ZHOU_WUYI3 天前
Apache Spark 集群部署与使用指南
大数据·spark·apache
随心............3 天前
在开发过程中遇到问题如何解决,以及两个经典问题
hive·hadoop·spark