Spark中的宽窄依赖-宽窄巷子

在Spark中,宽窄依赖(Narrow and Wide Dependencies)是理解分布式计算和数据流动的关键概念,其特性与"宽窄巷子"的比喻有相似之处:

1、什么是依赖关系?

2、什么是宽窄依赖?

窄依赖:Narrow Dependencies

定义:父RDD的一个分区的数据只给了子RDD的一个分区 【 不用经过Shuffle

窄依赖(Narrow Dependency)

  • 定义 :子RDD的每个分区仅依赖于父RDD的一个分区 (如mapfilter操作)。
  • 特点
    • 数据无需跨节点移动(本地计算)

    • 高效且容错简单(只需重算单个分区)

    • 类似窄巷子:数据流单向、并行,无交叉

      窄依赖示例:map操作

      rdd = sc.parallelize([1, 2, 3])
      mapped = rdd.map(lambda x: x * 2) # 子分区仅依赖父RDD的同一分区

宽依赖(Wide Dependency)

  • 定义 :子RDD的每个分区依赖父RDD的多个分区 (如groupByKeyreduceByKey)。
  • 特点
    • Shuffle操作(数据跨节点重组)

    • 可能成为性能瓶颈(网络传输开销)

    • 类似宽巷子:多路数据汇聚交叉,需全局协调

      宽依赖示例:reduceByKey

      rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
      reduced = rdd.reduceByKey(lambda x, y: x + y) # 相同键的数据需从多分区聚合

性能优化建议

  1. 优先使用窄操作 :如用reduceByKey替代groupByKey(前者局部聚合减少Shuffle数据量)
  2. 调整分区数 :通过repartition()coalesce()控制Shuffle粒度
  3. 持久化中间结果 :对重复使用的宽依赖RDD调用persist()

数学表达补充

设RDD分区为集合P,依赖关系可形式化定义为: $$ \text{窄依赖:} \quad \forall p_i \in P_{\text{子}}, \ \exists! p_j \in P_{\text{父}} \quad \text{s.t.} \quad p_i \subseteq f(p_j) $$ $$ \text{宽依赖:} \quad \exists p_i \in P_{\text{子}}, \ \ |{p_j \in P_{\text{父}} \mid p_i \cap p_j \neq \emptyset}| > 1 $$ 其中f为转换函数。

相关推荐
蒙特卡洛的随机游走2 小时前
Spark 中 distribute by、sort by、cluster by 深度解析
大数据·分布式·spark
化作星辰2 小时前
java 给鉴权kafka2.7(sasl)发送消息权限异常处理
java·大数据·开发语言·kafka
过往记忆2 小时前
Kafka 作为事件流的商业模式正在消亡
分布式·kafka
KYumii2 小时前
智慧判官-分布式编程评测平台
vue.js·spring boot·分布式·spring cloud·java-rabbitmq
user_admin_god3 小时前
企业级管理系统的站内信怎么轻量级优雅实现
java·大数据·数据库·spring boot
mengml_smile3 小时前
大数据生态Sql引擎
大数据
百***99243 小时前
RabbitMQ高级特性----生产者确认机制
分布式·rabbitmq
isNotNullX6 小时前
怎么用数据仓库来进行数据治理?
大数据·数据库·数据仓库·数据治理
小坏讲微服务6 小时前
Spring Cloud Alibaba Gateway 集成 Redis 限流的完整配置
数据库·redis·分布式·后端·spring cloud·架构·gateway