2022.DKE.Anomaly explanation: A review

2022.DKE.Anomaly explanation: A review

  • paper
  • [explanation by feature importance](#explanation by feature importance)
    • [main idea](#main idea)
    • [Non-weighted feature importance](#Non-weighted feature importance)
  • [explanation by feature values](#explanation by feature values)
    • [main idea](#main idea)
  • [explanation by data points comparison](#explanation by data points comparison)
    • [main idea](#main idea)
  • [explanation by structure analysis](#explanation by structure analysis)
    • [main idea](#main idea)

paper

pdf

explanation by feature importance

main idea

to explain that anomaly to the user, we can just say that attribute f1 contributed to the abnormality of the square data point.

Non-weighted feature importance

1999.VLDB.Finding intensional knowledge of distance-based outliers

  • define the outlier categories C = {"trivial outlier," "weak outlier," "strongest outlier"} to help gain better insights about the nature of outliers.

explanation by feature values

main idea

explanation by data points comparison

main idea

what is the difference between anomalies and regular data points.

explanation by structure analysis

main idea

x1 and x2 are anomalies for the cluster of round instances and why it is the case, that y is an anomaly for the the triangles and why, and finally that z is an anomaly

for the squares and why.

相关推荐
Font Tian18 天前
深度学习中的离群值
人工智能·pytorch·深度学习·异常检测·离群值
chencjiajy2 个月前
基于的图的异常检测算法OddBall
异常检测·图算法·oddball
颹蕭蕭3 个月前
pyflink 时序异常检测——PEWMA
python·flink·异常检测
mumukehao4 个月前
Rethinking Graph Neural Networksfor Anomaly Detection
异常检测·异配图
shaoyue12344 个月前
2020.ICDM.LP-Explain: Local Pictorial Explanation for Outliers
异常检测
shaoyue12344 个月前
1999.VLDB.Finding intensional knowledge of distance-based outliers
异常检测
妙龄少女郭德纲8 个月前
【异常检测】数据挖掘领域常用异常检测算法总结以及原理解析(一)
人工智能·算法·机器学习·数据挖掘·异常检测
妙龄少女郭德纲8 个月前
【异常检测】数据挖掘领域常用异常检测算法总结以及原理解析(二)
人工智能·算法·数据挖掘·异常检测
华为云开发者联盟1 年前
异常检测、自动告警,业务问题分钟级识别
异常检测·华为云开发者联盟·自动警告