ScrapeGraphAI 大模型增强的网络爬虫

在数据驱动的动态领域,从在线资源中提取有价值的见解至关重要。从市场分析到学术研究,对特定数据的需求推动了对强大的网络抓取工具的需求。

NSDT工具推荐Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

传统上,像 BeautifulSoup 和 Scrapy 这样的 Python 库一直是首选解决方案,需要用户利用编程专业知识来浏览复杂的网络结构。例如这个BeautifulSoup的示例:

# BeautifulSoup Example
from bs4 import BeautifulSoup
import requests

url = 'https://example.com'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
print(soup.title)

或这个Scrapy的示例:

# Scrapy Example
import scrapy

class ExampleSpider(scrapy.Spider):
    name = 'example'
    start_urls = ['https://example.com']

    def parse(self, response):
        title = response.css('title::text').get()
        print(title)

1、ScrapeGraphAI 简介

ScrapeGraphAI 是一款开创性的 Python 库,可重塑网络抓取格局。这款创新工具利用大型语言模型 (LLM) 和直接图形逻辑的强大功能来简化数据收集。与前代产品不同,ScrapeGraphAI 使用户能够表达他们的数据需求,从而消除网络抓取的复杂性。

%%capture
!apt install chromium-chromedriver
!pip install nest_asyncio
!pip install scrapegraphai
!playwright install

# if you plan on using text_to_speech and GPT4-Vision models be sure to use the
# correct APIKEY
OPENAI_API_KEY = "YOUR API KEY"
GOOGLE_API_KEY = "YOUR API KEY"

from scrapegraphai.graphs import SmartScraperGraph

graph_config = {
    "llm": {
        "api_key": OPENAI_API_KEY,
        "model": "gpt-3.5-turbo",
    },
}


smart_scraper_graph = SmartScraperGraph(
    prompt="List me all the projects with their descriptions.",
    # also accepts a string with the already downloaded HTML code
    source="https://perinim.github.io/projects/",
    config=graph_config
)

result = smart_scraper_graph.run()

import json

output = json.dumps(result, indent=2)

line_list = output.split("\n")  # Sort of line replacing "\n" with a new line

for line in line_list:
    print(line)

2、SpeechGraph

SpeechGraph 是一个类,代表默认抓取管道之一,可生成答案和音频文件。与 SmartScraperGraph 类似,但添加了 TextToSpeechNode 节点。

from scrapegraphai.graphs import SpeechGraph

# Define the configuration for the graph
graph_config = {
    "llm": {
        "api_key": OPENAI_API_KEY,
        "model": "gpt-3.5-turbo",
    },
    "tts_model": {
        "api_key": OPENAI_API_KEY,
        "model": "tts-1",
        "voice": "alloy"
    },
    "output_path": "website_summary.mp3",
}

# Create the SpeechGraph instance
speech_graph = SpeechGraph(
    prompt="Create a summary of the website",
    source="https://perinim.github.io/projects/",
    config=graph_config,
)

result = speech_graph.run()
answer = result.get("answer", "No answer found")

import json

output = json.dumps(answer, indent=2)

line_list = output.split("\n")  # Sort of line replacing "\n" with a new line

for line in line_list:
    print(line)

from IPython.display import Audio
wn = Audio("website_summary.mp3", autoplay=True)
display(wn)

3、GraphBuilder(实验性)

GraphBuilder 根据用户提示从头开始创建抓取管道。它返回包含节点和边的图形。

GraphBuilder 是一个实验性类,可帮助您根据提示创建自定义图形。它创建一个包含标识图形的基本元素的 json,并允许您使用 graphviz 对其进行可视化。它知道库默认提供的节点类型,并将它们连接起来以帮助您实现目标。

from scrapegraphai.builders import GraphBuilder

# Define the configuration for the graph
graph_config = {
    "llm": {
        "api_key": OPENAI_API_KEY,
        "model": "gpt-3.5-turbo",
    },
}

# Example usage of GraphBuilder
graph_builder = GraphBuilder(
    user_prompt="Extract the news and generate a text summary with a voiceover.",
    config=graph_config
)

graph_json = graph_builder.build_graph()

# Convert the resulting JSON to Graphviz format
graphviz_graph = graph_builder.convert_json_to_graphviz(graph_json)

# Save the graph to a file and open it in the default viewer
graphviz_graph.render('ScrapeGraphAI_generated_graph', view=True)

graph_json
graphviz_graph

4、ScrapeGraphAI 的工作原理

ScrapeGraphAI 通过解释用户查询并智能地导航 Web 内容以获取所需信息来运行。利用 LLM,它可以自主构建抓取管道,最大限度地减少用户干预。这种方法不仅提高了效率,还降低了进入门槛,使用户能够专注于数据分析而不是技术复杂性。

ScrapeGraphAI 能够自动执行复杂的抓取任务,同时确保高精度,是各行各业专业人士的游戏规则改变者。无论是监控竞争对手还是进行学术研究,此工具都使用户能够有效地利用网络数据。随着数字格局的不断发展,ScrapeGraphAI 成为推动数据驱动决策向前发展的不可或缺的盟友。

5、结束语

在以数据为中心的世界中,高效数据提取的重要性怎么强调也不为过。

ScrapeGraphAI 代表了网络抓取的范式转变,提供了一种由尖端技术支持的用户友好方法。当企业和研究人员力争在竞争环境中保持领先地位时,采用 这样的工具对于获得可行的见解和做出明智的决策至关重要。


原文链接:ScrapeGraphAI LLM爬虫 - BimAnt

相关推荐
小爬虫程序猿2 分钟前
如何设置爬虫的访问频率?
爬虫
数据小爬虫@1 小时前
如何高效利用Python爬虫按关键字搜索苏宁商品
开发语言·爬虫·python
袁袁袁袁满2 小时前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程
LucianaiB5 小时前
探索CSDN博客数据:使用Python爬虫技术
开发语言·爬虫·python
数据小爬虫@14 小时前
利用Python爬虫快速获取商品历史价格信息
开发语言·爬虫·python
小白学大数据14 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
qq_3758726916 小时前
15爬虫:下载器中间件
爬虫
数据小小爬虫19 小时前
如何利用Python爬虫获取商品历史价格信息
开发语言·爬虫·python
黑色叉腰丶大魔王20 小时前
《基于 Python 的网页爬虫详细教程》
开发语言·爬虫·python