2020.ICDM.LP-Explain: Local Pictorial Explanation for Outliers

2020.ICDM.LP-Explain: Local Pictorial Explanation for Outliers

  • paper
  • [main idea](#main idea)
  • contribution
  • method
    • [step 1:X, SQ Generation](#step 1:X, SQ Generation)
    • [step 2:Outlier Clustering](#step 2:Outlier Clustering)
      • [Relation Quantification of Feature Pairs](#Relation Quantification of Feature Pairs)
      • [Similarity of Outliers](#Similarity of Outliers)
      • [Spectral Clustering on Outliers](#Spectral Clustering on Outliers)
    • [Feature Pair Selection](#Feature Pair Selection)
  • experiment

paper

pdf

main idea

tries to identify the set of best Local Pictorial explanations (defined as the scatter plots in the 2-D space of the feature pairs) that can Explain the behavior for cluster of outliers.

Different from lookout in:

lookout chose top subspaces represent a compromise among all the outliers, thus they may not include the optimal subspace for each individual outlier.

Ours: cluster outliers, then explain the behavior for each cluster.

contribution

1、We propose a new pictorial explanation method to provide visualized descriptions for clusters of outliers.

2、We design an outlier clustering method specifically for our pictorial explanation task. The method first quantifies the relationship among feature pairs, then leverages a proposed rank similarity method to measure the distance between top feature pairs of outliers.

3、We formulate the feature pairs selection problem as a multi-task learning problem where a hyperparameter indicating the localization level is adopted to provide explanation towards individual cluster or all the outliers.

4、We conduct experiments on six public datasets and demonstrate the effectiveness of the proposed LP-Explain by the explanation performance.

method

1、define an effective measure to quantify the similarity between outliers, and then cluster outliers into different groups based on their abnormal feature pairs.

2、weigh the importance of feature pairs within each cluster through a

multi-task learning framework to select the set of top feature

pairs that best explain various outlier clusters.

step 1:X, SQ Generation

each row in X represents the anomaly score detected on feature pairs of outlier i. For example, the first in the first row means the anomaly score of outlier 1 in feature pair 1(i.e. fp1).

Then for each outlier, the scores are sorted to get feature pair sequence.

step 2:Outlier Clustering

Relation Quantification of Feature Pairs

construct a fully connected graph G =(V,E) to indicate feature pairs relationship:

compute the weight of the edge:

the edge weight between two feature pairs is large when most of the outliers obtain similar outlier scores in these two 2-D spaces.

To measure the structural similarity between two feature pairs, we need to learn a vector representation V =(v1, v2, ..., vn) of each node in the graph G.

Similarity of Outliers

a rank similarity method to quantitatively measure the relation between two outliers according to their ranked feature pair sequences.

Spectral Clustering on Outliers

use Self-Tuning Spectral Clustering method to produce clusters C

Feature Pair Selection

experiment

相关推荐
心 爱心 爱18 天前
Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 论文精读
计算机视觉·3d·异常检测·工业异常检测·三维异常检测·多模态工业异常检测·二维异常检测
青云交21 天前
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用
异常检测·分布式计算·信用评估·java 大数据·公共资源交易·可视化决策·智能政务
七元权22 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Shuai@2 个月前
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
异常检测
青云交2 个月前
Java 大视界 -- 基于 Java 的大数据实时流处理在金融高频交易数据分析中的应用
java·大数据·量化交易·异常检测·apache flink·实时流处理·金融高频交易
七77.4 个月前
Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline
深度学习·计算机视觉·异常检测
心 爱心 爱5 个月前
DAS3D: Dual-modality Anomaly Synthesis for 3D Anomaly Detection 论文精读
计算机视觉·异常检测·重建·判别器·多模态目标异常检测·三维异常检测·异常合成
deephub5 个月前
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
人工智能·python·机器学习·异常检测
阡之尘埃7 个月前
Python数据分析案例73——基于多种异常值监测算法探查内幕交易信息
人工智能·python·机器学习·数据分析·异常检测·无监督学习
踏雪亦无痕7 个月前
论文笔记:Dynamic Spectral Graph Anomaly Detection
论文阅读·深度学习·图论·异常检测