【ChatGPT】Python 实现计算两线段的变换矩阵

使用 chatgpt 问的问题:

shell 复制代码
作为一个数学专家,请给出下面的这个问题的数学解法;
要求如下:
1. 给出数学推理公式
2. 给出 python 的实现方式

已知条件:
1. 三维空间中,线段L1,L1 由点 A1 (ax1, ay1, az1) 与 B1 (bx1, by1, bz1) 组成; 
2. 三维空间中,空间线段L2, L2 由 点 A2 (ax2, ay2, az2) 与 B2 (bx2, by2, bz2) 组成; 
3. 线段 L2 是由线段 L1  通过 4 * 4 的 变化矩阵 M 得到

求解变换矩阵 M,并将 M 分解为平移矩阵与旋转矩阵;

回答如下:

To solve the problem of finding the transformation matrix that maps line segment to line segment in 3D space, we will utilize concepts from linear algebra. The transformation can be described as a combination of rotation and translation.

1. Mathematical Formulation

Representation of Points: Let:

Points of line segment be and .

Points of line segment be and .

Parameters of Lines: The direction vectors of the line segments are:

Translation : The translation component can be computed as:

Rotation Matrix : To find the rotation matrix that aligns with , we can use the following approach:

Normalize the direction vectors:

Compute the rotation axis using the cross product:

Calculate the angle between the two direction vectors using the dot product:

Use Rodrigues' rotation formula to construct the rotation matrix .

2. Python Implementation

python 实现如下:

python 复制代码
import numpy as np

def compute_transformation(A1, B1, A2, B2):
    # Convert points to numpy arrays
    A1 = np.array(A1)
    B1 = np.array(B1)
    A2 = np.array(A2)
    B2 = np.array(B2)

    # Compute direction vectors
    d1 = B1 - A1
    d2 = B2 - A2

    # Compute translation component
    T = A2 - A1

    # Normalize direction vectors
    norm_d1 = np.linalg.norm(d1)
    norm_d2 = np.linalg.norm(d2)
    if norm_d1 == 0 or norm_d2 == 0:
        raise ValueError("Direction vectors must be non-zero")
    
    u = d1 / norm_d1
    v = d2 / norm_d2

    # Compute rotation axis and angle
    rotation_axis = np.cross(u, v)
    angle = np.arccos(np.clip(np.dot(u, v), -1.0, 1.0))

    # If the rotation axis is a zero vector, u and v are parallel
    if np.linalg.norm(rotation_axis) == 0:
        R = np.eye(3)  # No rotation needed
    else:
        rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
        K = np.array([[0, -rotation_axis[2], rotation_axis[1]],
                      [rotation_axis[2], 0, -rotation_axis[0]],
                      [-rotation_axis[1], rotation_axis[0], 0]])
        R = (np.eye(3) + 
             np.sin(angle) * K + 
             (1 - np.cos(angle)) * np.dot(K, K))

    return R, T

A1 = (1, 2, 3)
B1 = (4, 5, 6)
A2 = (7, 8, 9)
B2 = (10, 11, 12)

R, T = compute_transformation(A1, B1, A2, B2)

print("Rotation Matrix R:")
print(R)
print("\nTranslation Vector T:")
print(T)

3. 对代码的解释:

The function compute_transformation takes the endpoints of two line segments as inputs.

It calculates the direction vectors, translation vector, and rotation matrix.

The rotation matrix is calculated using the Rodrigues' rotation formula approach.

The function returns the rotation matrix and translation vector .

This code should give you a good foundation to find the transformation matrix that maps segment to . Adjust the input values of and to test different segments.

相关推荐
SweetCode5 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
CryptoPP18 分钟前
springboot 对接马来西亚数据源API等多个国家的数据源
spring boot·后端·python·金融·区块链
xcLeigh26 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
大乔乔布斯26 分钟前
AttributeError: module ‘smtplib‘ has no attribute ‘SMTP_SSL‘ 解决方法
python·bash·ssl
明灯L39 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
databook40 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
碳基学AI1 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
niuniu_6661 小时前
简单的自动化场景(以 Chrome 浏览器 为例)
运维·chrome·python·selenium·测试工具·自动化·安全性测试
FearlessBlot1 小时前
Pyinstaller 打包flask_socketio为exe程序后出现:ValueError: Invalid async_mode specified
python·flask
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法