【ChatGPT】Python 实现计算两线段的变换矩阵

使用 chatgpt 问的问题:

shell 复制代码
作为一个数学专家,请给出下面的这个问题的数学解法;
要求如下:
1. 给出数学推理公式
2. 给出 python 的实现方式

已知条件:
1. 三维空间中,线段L1,L1 由点 A1 (ax1, ay1, az1) 与 B1 (bx1, by1, bz1) 组成; 
2. 三维空间中,空间线段L2, L2 由 点 A2 (ax2, ay2, az2) 与 B2 (bx2, by2, bz2) 组成; 
3. 线段 L2 是由线段 L1  通过 4 * 4 的 变化矩阵 M 得到

求解变换矩阵 M,并将 M 分解为平移矩阵与旋转矩阵;

回答如下:

To solve the problem of finding the transformation matrix that maps line segment to line segment in 3D space, we will utilize concepts from linear algebra. The transformation can be described as a combination of rotation and translation.

1. Mathematical Formulation

Representation of Points: Let:

Points of line segment be and .

Points of line segment be and .

Parameters of Lines: The direction vectors of the line segments are:

Translation : The translation component can be computed as:

Rotation Matrix : To find the rotation matrix that aligns with , we can use the following approach:

Normalize the direction vectors:

Compute the rotation axis using the cross product:

Calculate the angle between the two direction vectors using the dot product:

Use Rodrigues' rotation formula to construct the rotation matrix .

2. Python Implementation

python 实现如下:

python 复制代码
import numpy as np

def compute_transformation(A1, B1, A2, B2):
    # Convert points to numpy arrays
    A1 = np.array(A1)
    B1 = np.array(B1)
    A2 = np.array(A2)
    B2 = np.array(B2)

    # Compute direction vectors
    d1 = B1 - A1
    d2 = B2 - A2

    # Compute translation component
    T = A2 - A1

    # Normalize direction vectors
    norm_d1 = np.linalg.norm(d1)
    norm_d2 = np.linalg.norm(d2)
    if norm_d1 == 0 or norm_d2 == 0:
        raise ValueError("Direction vectors must be non-zero")
    
    u = d1 / norm_d1
    v = d2 / norm_d2

    # Compute rotation axis and angle
    rotation_axis = np.cross(u, v)
    angle = np.arccos(np.clip(np.dot(u, v), -1.0, 1.0))

    # If the rotation axis is a zero vector, u and v are parallel
    if np.linalg.norm(rotation_axis) == 0:
        R = np.eye(3)  # No rotation needed
    else:
        rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
        K = np.array([[0, -rotation_axis[2], rotation_axis[1]],
                      [rotation_axis[2], 0, -rotation_axis[0]],
                      [-rotation_axis[1], rotation_axis[0], 0]])
        R = (np.eye(3) + 
             np.sin(angle) * K + 
             (1 - np.cos(angle)) * np.dot(K, K))

    return R, T

A1 = (1, 2, 3)
B1 = (4, 5, 6)
A2 = (7, 8, 9)
B2 = (10, 11, 12)

R, T = compute_transformation(A1, B1, A2, B2)

print("Rotation Matrix R:")
print(R)
print("\nTranslation Vector T:")
print(T)

3. 对代码的解释:

The function compute_transformation takes the endpoints of two line segments as inputs.

It calculates the direction vectors, translation vector, and rotation matrix.

The rotation matrix is calculated using the Rodrigues' rotation formula approach.

The function returns the rotation matrix and translation vector .

This code should give you a good foundation to find the transformation matrix that maps segment to . Adjust the input values of and to test different segments.

相关推荐
WBluuue25 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩1 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室1 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘3 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3124 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降4 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法
猿榜4 小时前
Python基础-控制结构
python
Ratten4 小时前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(三)上传类的实现
python