【ChatGPT】Python 实现计算两线段的变换矩阵

使用 chatgpt 问的问题:

shell 复制代码
作为一个数学专家,请给出下面的这个问题的数学解法;
要求如下:
1. 给出数学推理公式
2. 给出 python 的实现方式

已知条件:
1. 三维空间中,线段L1,L1 由点 A1 (ax1, ay1, az1) 与 B1 (bx1, by1, bz1) 组成; 
2. 三维空间中,空间线段L2, L2 由 点 A2 (ax2, ay2, az2) 与 B2 (bx2, by2, bz2) 组成; 
3. 线段 L2 是由线段 L1  通过 4 * 4 的 变化矩阵 M 得到

求解变换矩阵 M,并将 M 分解为平移矩阵与旋转矩阵;

回答如下:

To solve the problem of finding the transformation matrix that maps line segment to line segment in 3D space, we will utilize concepts from linear algebra. The transformation can be described as a combination of rotation and translation.

1. Mathematical Formulation

Representation of Points: Let:

Points of line segment be and .

Points of line segment be and .

Parameters of Lines: The direction vectors of the line segments are:

Translation : The translation component can be computed as:

Rotation Matrix : To find the rotation matrix that aligns with , we can use the following approach:

Normalize the direction vectors:

Compute the rotation axis using the cross product:

Calculate the angle between the two direction vectors using the dot product:

Use Rodrigues' rotation formula to construct the rotation matrix .

2. Python Implementation

python 实现如下:

python 复制代码
import numpy as np

def compute_transformation(A1, B1, A2, B2):
    # Convert points to numpy arrays
    A1 = np.array(A1)
    B1 = np.array(B1)
    A2 = np.array(A2)
    B2 = np.array(B2)

    # Compute direction vectors
    d1 = B1 - A1
    d2 = B2 - A2

    # Compute translation component
    T = A2 - A1

    # Normalize direction vectors
    norm_d1 = np.linalg.norm(d1)
    norm_d2 = np.linalg.norm(d2)
    if norm_d1 == 0 or norm_d2 == 0:
        raise ValueError("Direction vectors must be non-zero")
    
    u = d1 / norm_d1
    v = d2 / norm_d2

    # Compute rotation axis and angle
    rotation_axis = np.cross(u, v)
    angle = np.arccos(np.clip(np.dot(u, v), -1.0, 1.0))

    # If the rotation axis is a zero vector, u and v are parallel
    if np.linalg.norm(rotation_axis) == 0:
        R = np.eye(3)  # No rotation needed
    else:
        rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
        K = np.array([[0, -rotation_axis[2], rotation_axis[1]],
                      [rotation_axis[2], 0, -rotation_axis[0]],
                      [-rotation_axis[1], rotation_axis[0], 0]])
        R = (np.eye(3) + 
             np.sin(angle) * K + 
             (1 - np.cos(angle)) * np.dot(K, K))

    return R, T

A1 = (1, 2, 3)
B1 = (4, 5, 6)
A2 = (7, 8, 9)
B2 = (10, 11, 12)

R, T = compute_transformation(A1, B1, A2, B2)

print("Rotation Matrix R:")
print(R)
print("\nTranslation Vector T:")
print(T)

3. 对代码的解释:

The function compute_transformation takes the endpoints of two line segments as inputs.

It calculates the direction vectors, translation vector, and rotation matrix.

The rotation matrix is calculated using the Rodrigues' rotation formula approach.

The function returns the rotation matrix and translation vector .

This code should give you a good foundation to find the transformation matrix that maps segment to . Adjust the input values of and to test different segments.

相关推荐
databook1 天前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室1 天前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
用户2519162427111 天前
Python之语言特点
python
刘立军1 天前
使用pyHugeGraph查询HugeGraph图数据
python·graphql
数据智能老司机1 天前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
数据智能老司机1 天前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
c8i1 天前
django中的FBV 和 CBV
python·django
c8i1 天前
python中的闭包和装饰器
python
这里有鱼汤2 天前
小白必看:QMT里的miniQMT入门教程
后端·python