CNN模型对CIFAR-10中的图像进行分类

代码功能

这段代码展示了如何使用 Keras 和 TensorFlow 构建一个卷积神经网络(CNN)模型,用于对 CIFAR-10 数据集中的图像进行分类。主要功能包括:

加载数据:从 CIFAR-10 数据集加载训练和测试图像。

数据预处理:将图像像素值归一化并对标签进行 one-hot 编码。

构建模型:搭建包含卷积层、池化层和全连接层的 CNN 模型。

训练模型:使用 Adam 优化器对模型进行训练。

评估模型:在测试数据集上评估模型的分类准确率。

代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical

# 加载 CIFAR-10 数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 数据预处理:归一化像素值和对标签进行 one-hot 编码
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
train_labels = to_categorical(train_labels, 10)
test_labels = to_categorical(test_labels, 10)

# 搭建卷积神经网络模型
model = models.Sequential()

# 第一个卷积层和池化层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))

# 第二个卷积层和池化层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# 第三个卷积层和池化层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# 全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

# 编译模型
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_acc:.4f}")
相关推荐
xuehaikj6 分钟前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
2501_941146326 分钟前
物联网与边缘计算在智能农业监测与精准种植系统中的创新应用研究
人工智能·物联网·边缘计算
Mintopia9 分钟前
🛰️ 低带宽环境下的 AIGC 内容传输优化技术
前端·人工智能·trae
aneasystone本尊9 分钟前
学习 LiteLLM 的模型管理
人工智能
Mintopia22 分钟前
⚡Trae Solo Coding 的效率法则
前端·人工智能·trae
武子康30 分钟前
AI研究-129 Qwen2.5-Omni-7B 要点:显存、上下文、并发与成本
人工智能·深度学习·机器学习·ai·大模型·qwen·全模态
汗流浃背了吧,老弟!39 分钟前
LangChain 实现文本分类任务
分类·langchain
聚梦小课堂41 分钟前
2025.11.18 AI快讯
人工智能·语言模型·新闻资讯·ai大事件
青梅主码42 分钟前
麦肯锡联合QuantumBlack最新发布《2025年人工智能的现状:智能体、创新和转型》报告:32% 的企业预计会继续裁员
前端·人工智能·后端
冻感糕人~1 小时前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习