CNN模型对CIFAR-10中的图像进行分类

代码功能

这段代码展示了如何使用 Keras 和 TensorFlow 构建一个卷积神经网络(CNN)模型,用于对 CIFAR-10 数据集中的图像进行分类。主要功能包括:

加载数据:从 CIFAR-10 数据集加载训练和测试图像。

数据预处理:将图像像素值归一化并对标签进行 one-hot 编码。

构建模型:搭建包含卷积层、池化层和全连接层的 CNN 模型。

训练模型:使用 Adam 优化器对模型进行训练。

评估模型:在测试数据集上评估模型的分类准确率。

代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical

# 加载 CIFAR-10 数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 数据预处理:归一化像素值和对标签进行 one-hot 编码
train_images = train_images.astype('float32') / 255.0
test_images = test_images.astype('float32') / 255.0
train_labels = to_categorical(train_labels, 10)
test_labels = to_categorical(test_labels, 10)

# 搭建卷积神经网络模型
model = models.Sequential()

# 第一个卷积层和池化层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))

# 第二个卷积层和池化层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# 第三个卷积层和池化层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# 全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

# 编译模型
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_acc:.4f}")
相关推荐
yzx9910138 分钟前
2026年主流AI工具深度用户指南
人工智能
香芋Yu15 分钟前
【强化学习教程——01_强化学习基石】第06章_Q-Learning与SARSA
人工智能·算法·强化学习·rl·sarsa·q-learning
零售ERP菜鸟33 分钟前
数字系统的新角色:从管控工具到赋能平台
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
Howie Zphile39 分钟前
奇门遁甲x全面预算 # 双轨校准实务:资本化支出与经营目标设定的奇门-财务融合方案
大数据·人工智能
大模型任我行1 小时前
腾讯:Agent视觉隐喻迁移
人工智能·语言模型·自然语言处理·论文笔记
weixin_448119941 小时前
Datawhale Easy-Vibe 202602 第1次笔记
人工智能
weixin_509138341 小时前
《智能体认知动力学导论》第7章:应用案例
人工智能·智能体·语义空间·认知动力学
子午1 小时前
【宠物识别系统】Python+深度学习+人工智能+算法模型+图像识别+TensorFlow+2026计算机毕设项目
人工智能·python·深度学习
Jouham1 小时前
中小微企业AI获客痛点解析:瞬维智能如何用“自动化+精准度”破局
大数据·人工智能·自动化
得一录1 小时前
AI面试·中档题
人工智能