遥感影像-实例分割数据集:iSAID 从切图到YOLO格式数据集制作详细介绍

背景介绍

开源数据集isaid标注包含实例分割,但是原始影像太大,很吃显存,一般显卡无法用原始影像直接训练,所以需要对影像进行裁剪,并生成对应的标签,因为想用yolo系列跑模型,所以将标签需要转为txt格式。

制作流程

数据下载及目录整理

影像下载:https://captain-whu.github.io/DOTA/dataset.html,下载DOTA-v1.0就行

标签下载:https://captain-whu.github.io/iSAID/dataset.html

统计一下数据集数量,其中:

训练集影像:1411张原始图像;1411张实例标签;1411张语义标签。将所有训练图像放置在一起创建iSAID/train/

验证集影像:458张原始图像;458张实例标签;458张语义标签。将所有验证图像放置在一起创建iSAID/val/

测试集影像:937张原始图像;

目录结构如下:

复制代码
iSAID
├── test
│   └── images
│       ├── P0006.png
│       └── ...
│       └── P0009.png
├── train
│   └── images
│       ├── P0002_instance_color_RGB.png
│       ├── P0002_instance_id_RGB.png
│       ├── P0002.png
│       ├── ...
│       ├── P0010_instance_color_RGB.png
│       ├── P0010_instance_id_RGB.png
│       └── P0010.png
└── val
    └── images
        ├── P0003_instance_color_RGB.png
        ├── P0003_instance_id_RGB.png
        ├── P0003.png
        ├── ...
        ├── P0004_instance_color_RGB.png
        ├── P0004_instance_id_RGB.png
        └── P0004.png
影像裁剪

下载裁剪代码:见博客末尾

进行下列步骤:

创建环境,根据environment.yml文件中的python库安装环境,源码中创建的环境比较老,很容易安装失败,安装的库新一点也没关系;(注意:如果安装lycon失败,先执行下面命令再重新安装包)

bash 复制代码
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev

安装依赖库,执行下面命令:

bash 复制代码
# 库1(可装可不装,反正我没装)
cd cocoapi/PythonAPI
make
python setup.py install

# 库2
cd preprocess/cityscapesScripts
python setup.py install

# 库3
cd preprocess/Detectron
python setup.py install

执行裁剪代码split.py,注意需要修改裁剪文件的路径,裁剪小图的大小,以及裁剪窗口的重叠度,执行下面代码:

bash 复制代码
cd preprocess
python split.py --set train,val
python split.py --set test
# 上面代码执行时间很长
json标签生成

执行json标签生成代码preprocess.py,这一步没啥要注意的,如果前面环境都安装没问题,那就可以正常执行,不过执行时间也是很久,运行完毕后将生成coco格式的大json文件

bash 复制代码
python preprocess.py --set train,val
json转yolo格式

在转为yolo格式之前可以先利用coco官方API统计一下目标类别,代码如下./preprocess/statistical_category.py:

python 复制代码
# -*- coding: utf-8 -*-

from pycocotools.coco import COCO

# 文件路径
dataDir = r'l/'
dataType = 'train2017' #val2017
annFile = '{}/instances_{}.json'.format(dataDir, dataType)

# initialize COCO api for instance annotations
coco_train = COCO(annFile)

# display COCO categories and supercategories
# 显示所有类别
cats = coco_train.loadCats(coco_train.getCatIds())
cat_nms = [cat['name'] for cat in cats]
print('COCO categories:\n{}'.format('\n'.join(cat_nms)) + '\n')
# 统计单个类别的图片数量与标注数量
for cat_name in cat_nms:
    catId = coco_train.getCatIds(catNms=cat_name)
    if cat_name == "person":
        print(catId)
        imgId = coco_train.getImgIds(catIds=catId)
        annId = coco_train.getAnnIds(imgIds=imgId, catIds=catId, iscrowd=False)
        print("{:<15} {:<6d}     {:<10d}\n".format(cat_name, len(imgId), len(annId)))
    if cat_name == "motorcycle":
        print(catId)
        imgId = coco_train.getImgIds(catIds=catId)
        annId = coco_train.getAnnIds(imgIds=imgId, catIds=catId, iscrowd=False)
        print("{:<15} {:<6d}     {:<10d}\n".format(cat_name, len(imgId), len(annId)))
# 统计全部的类别及全部的图片数量和标注数量
print("NUM_categories: " + str(len(coco_train.dataset['categories'])))
print("NUM_images: " + str(len(coco_train.dataset['images'])))
print("NUM_annotations: " + str(len(coco_train.dataset['annotations'])))

# Classes
ship
storage_tank
baseball_diamond
tennis_court
basketball_court
Ground_Track_Field
Bridge
Large_Vehicle
Small_Vehicle
Helicopter
Swimming_pool
Roundabout
Soccer_ball_field
plane
Harbor

然后根据官方转换代码:见博客末尾

将coco格式的大json数据转换成多个yolo格式的txt文件,其中第一个数字为类别,后面每两个数字代表一个点对于整张图像的相对位置,每一行代表图像中的一个mask。txt文件内容如下:

需要本博客相关数据集的小伙伴可私信哦!

01、官方原始数据集;

02、本博客全套代码;

03、裁剪后可直接训练的小图数据集;

相关推荐
dragon_perfect4 小时前
全流程基于Yolov8实现在Label-Studio实现半自动标注,已经把整个流程理清楚,把所有的坑解决。
开发语言·python·yolo·labelstudio
HUIMU_5 小时前
YOLOv5实战-GPU版本的pytorch虚拟环境配置
人工智能·pytorch·深度学习·yolo
Coovally AI模型快速验证5 小时前
基于YOLO集成模型的无人机多光谱风电部件缺陷检测
人工智能·安全·yolo·目标跟踪·无人机
羊羊小栈5 小时前
基于「YOLO目标检测 + 多模态AI分析」的PCB缺陷检测分析系统(vue+flask+数据集+模型训练)
vue.js·人工智能·yolo·目标检测·flask·毕业设计·大作业
郭庆汝6 小时前
模型部署:(三)安卓端部署Yolov8-v8.2.99目标检测项目全流程记录
android·yolo·目标检测·yolov8
格林威7 小时前
工业相机如何通过光度立体成像技术实现高效精准的2.5D缺陷检测
人工智能·深度学习·数码相机·yolo·计算机视觉
羊羊小栈7 小时前
基于「YOLO目标检测 + 多模态AI分析」的植物病害检测分析系统(vue+flask+数据集+模型训练)
人工智能·yolo·目标检测·毕业设计·创业创新·大作业
m_136877 小时前
YOLOv8 mac-intel芯片 部署指南
yolo
深度学习lover12 小时前
<数据集>yolo梨幼果识别数据集<目标检测>
python·yolo·目标检测·计算机视觉·数据集
格林威14 小时前
工业检测机器视觉为啥非用工业相机?普通相机差在哪?
人工智能·数码相机·yolo·计算机视觉·视觉检测·相机