遥感影像-实例分割数据集:iSAID 从切图到YOLO格式数据集制作详细介绍

背景介绍

开源数据集isaid标注包含实例分割,但是原始影像太大,很吃显存,一般显卡无法用原始影像直接训练,所以需要对影像进行裁剪,并生成对应的标签,因为想用yolo系列跑模型,所以将标签需要转为txt格式。

制作流程

数据下载及目录整理

影像下载:https://captain-whu.github.io/DOTA/dataset.html,下载DOTA-v1.0就行

标签下载:https://captain-whu.github.io/iSAID/dataset.html

统计一下数据集数量,其中:

训练集影像:1411张原始图像;1411张实例标签;1411张语义标签。将所有训练图像放置在一起创建iSAID/train/

验证集影像:458张原始图像;458张实例标签;458张语义标签。将所有验证图像放置在一起创建iSAID/val/

测试集影像:937张原始图像;

目录结构如下:

复制代码
iSAID
├── test
│   └── images
│       ├── P0006.png
│       └── ...
│       └── P0009.png
├── train
│   └── images
│       ├── P0002_instance_color_RGB.png
│       ├── P0002_instance_id_RGB.png
│       ├── P0002.png
│       ├── ...
│       ├── P0010_instance_color_RGB.png
│       ├── P0010_instance_id_RGB.png
│       └── P0010.png
└── val
    └── images
        ├── P0003_instance_color_RGB.png
        ├── P0003_instance_id_RGB.png
        ├── P0003.png
        ├── ...
        ├── P0004_instance_color_RGB.png
        ├── P0004_instance_id_RGB.png
        └── P0004.png
影像裁剪

下载裁剪代码:见博客末尾

进行下列步骤:

创建环境,根据environment.yml文件中的python库安装环境,源码中创建的环境比较老,很容易安装失败,安装的库新一点也没关系;(注意:如果安装lycon失败,先执行下面命令再重新安装包)

bash 复制代码
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev

安装依赖库,执行下面命令:

bash 复制代码
# 库1(可装可不装,反正我没装)
cd cocoapi/PythonAPI
make
python setup.py install

# 库2
cd preprocess/cityscapesScripts
python setup.py install

# 库3
cd preprocess/Detectron
python setup.py install

执行裁剪代码split.py,注意需要修改裁剪文件的路径,裁剪小图的大小,以及裁剪窗口的重叠度,执行下面代码:

bash 复制代码
cd preprocess
python split.py --set train,val
python split.py --set test
# 上面代码执行时间很长
json标签生成

执行json标签生成代码preprocess.py,这一步没啥要注意的,如果前面环境都安装没问题,那就可以正常执行,不过执行时间也是很久,运行完毕后将生成coco格式的大json文件

bash 复制代码
python preprocess.py --set train,val
json转yolo格式

在转为yolo格式之前可以先利用coco官方API统计一下目标类别,代码如下./preprocess/statistical_category.py:

python 复制代码
# -*- coding: utf-8 -*-

from pycocotools.coco import COCO

# 文件路径
dataDir = r'l/'
dataType = 'train2017' #val2017
annFile = '{}/instances_{}.json'.format(dataDir, dataType)

# initialize COCO api for instance annotations
coco_train = COCO(annFile)

# display COCO categories and supercategories
# 显示所有类别
cats = coco_train.loadCats(coco_train.getCatIds())
cat_nms = [cat['name'] for cat in cats]
print('COCO categories:\n{}'.format('\n'.join(cat_nms)) + '\n')
# 统计单个类别的图片数量与标注数量
for cat_name in cat_nms:
    catId = coco_train.getCatIds(catNms=cat_name)
    if cat_name == "person":
        print(catId)
        imgId = coco_train.getImgIds(catIds=catId)
        annId = coco_train.getAnnIds(imgIds=imgId, catIds=catId, iscrowd=False)
        print("{:<15} {:<6d}     {:<10d}\n".format(cat_name, len(imgId), len(annId)))
    if cat_name == "motorcycle":
        print(catId)
        imgId = coco_train.getImgIds(catIds=catId)
        annId = coco_train.getAnnIds(imgIds=imgId, catIds=catId, iscrowd=False)
        print("{:<15} {:<6d}     {:<10d}\n".format(cat_name, len(imgId), len(annId)))
# 统计全部的类别及全部的图片数量和标注数量
print("NUM_categories: " + str(len(coco_train.dataset['categories'])))
print("NUM_images: " + str(len(coco_train.dataset['images'])))
print("NUM_annotations: " + str(len(coco_train.dataset['annotations'])))

# Classes
ship
storage_tank
baseball_diamond
tennis_court
basketball_court
Ground_Track_Field
Bridge
Large_Vehicle
Small_Vehicle
Helicopter
Swimming_pool
Roundabout
Soccer_ball_field
plane
Harbor

然后根据官方转换代码:见博客末尾

将coco格式的大json数据转换成多个yolo格式的txt文件,其中第一个数字为类别,后面每两个数字代表一个点对于整张图像的相对位置,每一行代表图像中的一个mask。txt文件内容如下:

需要本博客相关数据集的小伙伴可私信哦!

01、官方原始数据集;

02、本博客全套代码;

03、裁剪后可直接训练的小图数据集;

相关推荐
Coovally AI模型快速验证28 分钟前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
yzx9910132 小时前
小程序开发APP
开发语言·人工智能·python·yolo
飞翔的佩奇2 小时前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
yzx9910131 天前
Yolov模型的演变
人工智能·算法·yolo
lxmyzzs1 天前
【图像算法 - 16】庖丁解牛:基于YOLO12与OpenCV的车辆部件级实例分割实战(附完整代码)
人工智能·深度学习·opencv·算法·yolo·计算机视觉·实例分割
Coovally AI模型快速验证2 天前
SOD-YOLO:基于YOLO的无人机图像小目标检测增强方法
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
飞翔的佩奇2 天前
【完整源码+数据集+部署教程】食品分类与实例分割系统源码和数据集:改进yolo11-AggregatedAttention
python·yolo·计算机视觉·数据集·yolo11·食品分类与实例分割
Virgil1392 天前
用PaddleDetection套件训练自己的数据集,PP-YOLO-SOD训练全流程
yolo
Coovally AI模型快速验证3 天前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
程序猿小D4 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测